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ABSTRACT
This study presents the power Mira distribution, an innovative

three-parameter probability model that improves baseline distribu-
tions by including an extra shaping parameter. The suggested distri-
bution has exceptional adaptability in representing various data char-
acteristics, such as left and right skewness, declining trends, and uni-
modal patterns. These characteristics render it exceptionally appro-
priate for modeling risk-related data, an essential component of actu-
arial science and insurance analytics. We do an extensive theoretical
study, delineating essential statistical features and offering a robust
framework for parameter estimation. Critical risk metrics, includ-
ing value-at-risk and tail value-at-risk, are calculated and assessed
using comprehensive numerical simulations, validating the precision
and efficacy of the suggested estimators. We illustrate the practical
value of the power Mira distribution by applying it to a real-world in-
surance loss dataset and comparing its performance with established
models. The findings underscore its exceptional goodness-of-fit and
flexibility, affirming its capability as an effective instrument for risk
assessment and financial modeling.
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1. Introduction

In the last decades, many distributions have been generated using different methods to improve the
flexibility. This can be achieved by adding one or more parameters to the parent models. Parameter(s) to
the parent models. One of these methods is the power transformation method, a powerful tool for creating
new models to better capture complex data sets’ underlying patterns. This technique is beneficial when
dealing with non-linear relationships between variables, which can be difficult to model using traditional
statistical methods. By transforming the data to a new distribution, it is possible to create a more flexible
model to fit the data better and make more accurate predictions. The power transformation method can
also be used with a wide range of distributions, making it a versatile tool for data analysts and statisticians
in various fields. Overall, the power transformation method is an important technique for creating more
flexible and accurate statistical models and is an essential tool in the modern data analysis toolkit.

Some of the recent generated distributions include, power-modified Kies-exponential distribution by
[3], modified Lindley distribution by[15], the power piecewise exponential model by [22], exponentiated
odd Lomax exponential distribution by [16], alpha power transformed extended exponential distribution
by [25], unit-Lindley distribution by [27], the arcsine-X family of distributions by [40], generalized odd
linear exponential family of distribution by [26], alpha power inverted exponential distribution by [13], type
II Quasi Lambert family [24], Gompertz-alpha power inverted exponential distribution by [17], extended
half-power exponential model by [34], alpha power Kumaraswamy inverted exponential model by [38], to
mention a few.

In disciplines such as insurance, actuarial science, and economics, datasets often exhibit observations
that significantly diverge from the central trend, a fact generally ascribed to the existence of outliers or heavy
tails. Conventional probability distributions often fail to effectively represent these attributes, resulting in
suboptimal model performance and questionable statistical judgments. Thus, the need for heavy-tailed
distributions emerges since they provide a more suitable framework for depicting data with significant fluc-
tuations. These distributions provide more flexibility in modeling skewness and kurtosis, rendering them
especially beneficial in risk assessment, financial modeling, and dependability analysis. A comprehensive
study has been undertaken on the formulation and use of heavy-tailed distributions, focusing on their theo-
retical characteristics and practical consequences. Heavy-tailed distributions are available in the literature;
for more details, see [37, 41, 31, 11, 4, 14]

The main aim of this paper is divided into two parts: the first objective is to introduce a new flexible
distribution based on the power method. It can be used in different phenomena, particularly in modeling
the insurance loss data set, and can also be used to estimate the risk exposure. This new proposed model
is referred to as the power Mira distribution (PMD). The proposed model has three parameters, and it can
be unimodal and right-skewed or left-skewed. Furthermore, the two-parameter Mira (TPM) distribution is
a special case of our proposed model. The second objective is to derive well-known risk measures for the
PMD model.

The following factors have been involved in the design of this work. Section 2 defines the novel power
Mira model and its corresponding reliability statistics. Several statistical properties, such as the quantile
function, moments, moment generating function, moments of residual life, Rényi entropy, and the distri-
bution of order statistics, are presented in Section 3. Section 4 contains the estimation of the unknown
parameters using several techniques. A Monte Carlo simulation study to examine the consistency property
of the maximum likelihood estimators is given in Section 5. Section 6 presents some actuarial measures
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from the power Mira distribution. One data set to examine the potential of the proposed distribution is given
in Section 7, followed by some concluding remarks in Section 8.

2. Model formulation

Sen et al. [35] defined the TPM distribution where its cumulative distribution function (CDF) (for t > 0)
is given as follows

G(t) = 1 −
δ2

(
α
δ2
+ αt2

2 +
αt
δ
+ 1

)
e−δt

α + δ2 ; t, α, δ > 0, (2.1)

and its probability density function (PDF) is defined as follows

g(t) =
δ3

(
αt2 + 2

)
e−δt

2
(
α + δ2) ; t, α, δ > 0. (2.2)

By using the following transformation X = T
1
β to (2.1), the CDF of the PMD is

F(x) = 1 −
e−δx

β
(
δ2

(
α
δ2
+ 1

2αx2β + αxβ
δ
+ 1

))
α + δ2 ; x, α, δ, β > 0. (2.3)

The associated PDF is defined by

f (x) =
βδ3xβ−1

(
αx2β + 2

)
e−δx

β

2
(
α + δ2) ; x, α, δ, β > 0.. (2.4)

From (2.4), clearly the random variable X is a TPM distribution if β = 1. Figure 1 shows the PDF plots of
the PMD. It is visible that the PDF can take several shapes, including increasing, right-skewed, left-skewed,
unimodal, and reverse-J.

2.1. Reliability measures

The PMD’s hazard rate function (hrf) and survival function (SF) are provided, respectively, by

S (x) = 1 − F(x) = −
e−δx

β
(
δ2

(
α
δ2
+ 1

2αx2β + αxβ
δ
+ 1

))
α + δ2 , (2.5)

and

h(x) =
f (x)
S (x)

=
βδ3

(
αx2β + 2

)
x
(
2αδ + 2

(
α + δ2) x−β + αδ2xβ

) . (2.6)

The PMD’s cumulative hazard rate function is expressed simply as :

H(x) = − ln[S (x)] = ln

e−δx
β
(
δ2

(
α
δ2
+ 1

2αx2β + αxβ
δ
+ 1

))
α + δ2

 . (2.7)

Figure 2 shows the possible plots of the hrf of the PMD. The hrf of the PMD can be increasing, reverse-J,
bathtub, upside-down bathtub, and bathtub followed by upside-down bathtub shapes.
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Figure 1. Density plots for PMD.

3. Statistical properties

In this section, we derive several significant statistical features of PMD. Quantile function, moments,
and generating function, moments of residual life, R’enyi entropy, Lorenz, and Bonferroni are some char-
acteristics. Curves and order statistics distribution.

3.1. Quantile function of PMD

It is important to point out that the quantile function has an important role in generating random data
sets. The quantile function of the PMD is obtained by inverting Equation (2.3) as follows

F(x) = 1 −
e−δx

β
(
δ2

(
α
δ2
+ 1

2αx2β + αxβ
δ
+ 1

))
α + δ2 = u, (3.1)

for 0 ≤ u ≤ 1, that is, we solve the non-linear equation,

−δxβ + ln
((
α

δ2 +
1
2
αx2β +

αxβ

δ
+ 1

))
− ln

(
(1 − u)(α + δ2)

δ2

)
= 0. (3.2)

Thus, random numbers from the PMD can be obtained using Equation (3.2).

3.2. Moments and related measures
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Figure 2. Hazard rate plots for the PMD.

Moments are essential statistical metrics that characterize the form and distribution of a probability func-
tion. The first moment denotes the central trend, while the second moment, variance, measures dispersion.
Higher-order moments, including skewness and kurtosis, elucidate asymmetry and tail behavior. These
moments are essential in statistical modeling, aiding in the characterization of data distributions, evaluation
of model fit, and facilitation of decision-making across many applicable domains. The rth moment of the
PMD is defined as follows

µr = E(Xr) =
∫ ∞

0
xr f (x)dx =

βδ3

2
(
α + δ2) [

α

∫ ∞

0
xr+3β−1e−δx

β

dx + 2
∫ ∞

0
xr+β−1e−δx

β

dx
]

=
δ−

r
β

(
αΓ

(
r
β
+ 3

)
+ 2δ2Γ

(
r+β
β

))
2
(
α + δ2) . (3.3)

Consequently, from (3.3) and by setting r = 1 and 2, we can be provide the 1st (µ1) which define the Mean
for the PMD.
Furthermore, the variance (Var) and coefficient of variation (CV) of the PMD can be expressed as

Var = µ2 − µ
2
1,
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and

CV =

√
µ2 − µ

2
1

µ1
.

The skewness (γ3) and kurtosis (γ4) measures of the PMD are obtained to be

γ3 =
µ3 − 3µ2 + 2µ3

1

(µ2 − µ
2
1)3/2

,

and

γ4 =
µ4 − 4µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ
2
1)2

.

Table 1. Various statistical measures for the PMD at β = 1.5.

α Mean Var CV γ3 γ4

δ=1.25 0.25 0.9095 0.4124 0.7061 1.1122 1.3363
0.5 1.0088 0.489 0.6932 0.982 0.837

0.75 1.0866 0.5352 0.6733 0.8673 0.5105

δ=1.5 0.25 0.7734 0.2977 0.7054 1.1428 1.5003
0.5 0.8423 0.3505 0.7028 1.0625 1.1231

0.75 0.8997 0.3872 0.6916 0.9715 0.8035

δ=1.75 0.25 0.6793 0.2279 0.7029 1.1519 1.5759
0.5 0.7286 0.2645 0.706 1.1098 1.3255

0.75 0.7714 0.2924 0.701 1.0435 1.0504

δ=2 0.25 0.6098 0.1822 0.7 1.1531 1.6018
0.5 0.6462 0.2081 0.7059 1.1355 1.4572

0.75 0.6787 0.229 0.705 1.0909 1.2405

δ=2.25 0.25 0.5562 0.1505 0.6974 1.1559 1.6116
0.5 0.5837 0.1691 0.7046 1.1478 1.5366

0.75 0.6089 0.1849 0.7062 1.1206 1.3782

Tables (1) and (2) represent different measures of PMD by employing numerous choices of α, δ and β.
These results show that as α tends to increase and for fixed values of δ and β, the Mean and Var of PMD
are increasing, while γ3 and γ4 are decreasing. Further, for fixed values of α and β, both values of γ3 and γ4

are increasing, and the value of Mean and Var decrease as δ increases. Consequently, the PMD is a flexible
distribution for explaining different data sets.

The rth incomplete moments of the PMD are defined as follows

φr(t) =
∫ t

0
xr f (x)dx =

βδ3

2
(
α + δ2) [

α

∫ t

0
xr+3β−1e−δx

β

dx + 2
∫ t

0
xr+β−1e−δx

β

dx
]
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Table 2. Various statistical measures for the PMD at β = 2.5.

α Mean Var CV γ3 γ4

δ=1.25 0.25 0.8875 0.1555 0.4443 0.4093 -0.1668
0.5 0.9451 0.1737 0.4409 0.3281 -0.3481

0.75 0.9903 0.1832 0.4322 0.242 -0.4576

δ=1.5 0.25 0.8056 0.1273 0.4429 0.4223 -0.1086
0.5 0.8476 0.1417 0.4441 0.3812 -0.2443

0.75 0.8825 0.151 0.4403 0.3207 -0.3599

δ=1.75 0.25 0.7456 0.1081 0.4409 0.4227 -0.0826
0.5 0.7769 0.1192 0.4444 0.4081 -0.1707

0.75 0.8041 0.1272 0.4436 0.3695 -0.2707

δ=2 0.25 0.6992 0.0943 0.4392 0.4182 -0.0739
0.5 0.7231 0.1028 0.4435 0.4199 -0.1237

0.75 0.7445 0.1095 0.4445 0.398 -0.2012

δ=2.25 0.25 0.6619 0.0839 0.4376 0.4122 -0.0739
0.5 0.6806 0.0906 0.4422 0.4064 -0.0961

0.75 0.6977 0.0960 0.4441 0.4036 -0.1514

=
δ−

r
β

(
αδ

r
β+3

(
−t3β+r

)
E− r

β−2

(
tβδ

)
− 2δ

r
β+3tβ+rE− r

β

(
tβδ

)
+ αΓ

(
r
β
+ 3

)
+ 2δ2Γ

(
r+β
β

))
2
(
α + δ2) , (3.4)

where En(z) =
∫ ∞

1
e−zt

tn dt.
One of the most important uses of the incomplete moments is to determine two critical inequality curves
called the Bonferroni and Lorenz curves. They are determined, respectively, by the PMD as follows

B(p) =
1
pµ

∫ xq

0
x f (x)dx =

1
pµ
φ1(xp), F(xp) = p,

L(p) =
1
µ

∫ xp

0
x f (x)dx =

1
µ
φ1(xp).

3.3. Moment generating function

By applying the series expansion

etx =

∞∑
i=0

tixi

i!
,
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and following the same steps leading to equation (3.3), we obtain MGF as follows

M(t) = E(etx) =
∞∑

i=0

ti

i!
E(Xi) =

∞∑
i=0

ti

i!

δ−
i
β

(
αΓ

(
i
β
+ 3

)
+ 2δ2Γ

(
i+β
β

))
2
(
α + δ2) . (3.5)

3.4. Moment of residual and reversed residual life

The sth moment of the residual life, say ωs(t) of X follows PMD is expressed as

ωs(t) = E
[
(X − t)s

| X > t
]
=

1
1 − F(t)

∫ ∞

t
(x − t)s f (x)dx =

1
1 − F(t)

s∑
r=0

(
s
r

)
(−t)s−r

∫ ∞

t
xr f (x)dx

=
1

1 − F(t)

s∑
r=0

(
s
r

)
(−t)s−r

tr
(
δtβ

)− r
β
(
αΓ

(
r
β
+ 3, tβδ

)
+ 2δ2Γ

(
r+β
β
, tβδ

))
2
(
α + δ2) ,

where Γ(a, z) =
∫ ∞

z
ta−1e−tdt.

As a result, the sth moment of the reversed residual life (ϑs(t)) of X is

ϑs(t) = E
[
(t − X)s

| X ≤ t
]
=

1
F(t)

∫ t

0
(t − x)s f (x)dx =

1
F(t)

s∑
r=0

(
s
r

)
(t)s−r(−1)r

∫ t

0
xr f (x)dx

=
1

F(t)

s∑
r=0

(
s
r

)
(t)s−r(−1)rφr(t). (3.6)

3.5. Rényi entropy

The corresponding Rényi entropy of X can be defined as

IR(w) =
1

1 − w
log

(∫ ∞

0
[ f (x;α, β, δ)]wdx

)
,w , 1,w > 0. (3.7)

Then, for PMD, we have∫ ∞

0
[ f (x;α, β, δ)]w =

βwδ3wαw

2w (
α + δ2)w

∫ ∞

0
xw(β−1)+2βw

(
1 +

2
α

x−2β
)w

e−wδxβdx

=
βwδ3wαw

2w (
α + δ2)w

∞∑
i=0

(−1)i

(
w + i − 1

i

) (
2
α

)i ∫ ∞

0
xw(β−1)+2βw−2iβe−wδxβdx

=

∞∑
i=0

(−1)i

(
w + i − 1

i

)
βw−1αw−i

2w−i (α + δ2)w δ
2βi+w−1
β w

2βi−3βw+w−1
β Γ

(
3βw − w − 2iβ + 1

β

)
.

Thus, the Rényi entropy of the PMD distribution is expressed as

IR(w) =
1

1 − w
log

 ∞∑
i=0

(−1)i

(
w + i − 1

i

)
βw−1αw−i

2w−i (α + δ2)w δ
2βi+w−1
β w

2βi−3βw+w−1
β Γ

(
3βw − w − 2iβ + 1

β

) .
Modern Journal of Statistics Volume 1, Issue 1, 1–24



9

3.6. Order atatistics

Order statistics are essential in statistical analysis as they provide insights into the distribution of ranked
data points. The values acquired from a sample ordered in ascending or descending order are shown, with
the minimum and maximum serving as the first and last order statistics, respectively. These statistics are
crucial for reliability analysis, risk assessment, and extreme value theory since they facilitate the modeling
of minimum or maximum observations within a dataset. Their applications include domains like as en-
gineering, finance, and actuarial science, where comprehension of extremes and percentiles is crucial for
decision-making and risk management.

The PDF of the kth order statistic from the PMD distribution is given by

fk:n(x) =
n! f (x)

(k − 1)!(n − k)!
[F(x)]k−1[1 − F(x)]n−k

=
n! f (x)

(k − 1)!(n − k)!

n−k∑
p=0

(−1)p

(
n − k

p

)
[F(x)]p+k−1

=
n!

(k − 1)!(n − k)!

n−k∑
p=0

(−1)p

(
n − k

p

) 1 − e−δx
β
(
δ2

(
α
δ2
+ 1

2αx2β + αxβ
δ
+ 1

))
α + δ2


p+k−1

×
βδ3xβ−1

(
αx2β + 2

)
e−δx

β

2
(
α + δ2)

=
n!

(k − 1)!(n − k)!

n−k∑
p=0

∞∑
l=0

(−1)p+l

(
n − k

p

)(
p + k − 1

l

)

×
βδ3+2lxβ−1

(
αx2β + 2

)
e−(l+1)δxβ

2
(
α + δ2)l+1

(
α

δ2 +
1
2
αx2β +

αxβ

δ
+ 1

)l

.

The CDF of the kth order statistic from the PMD distribution is determined as follows

Fk:n(x) =
n∑

r=k

(n
r )(F(x))r(1 − F(x))n−r

=

2k−nΓ(n + 1)
(

eδ(−xβ)(−2δ2−α(δxβ(δxβ+2)+2))
2(α+δ2) + 1

)k (
eδ(−xβ)(2δ2+α(δxβ(δxβ+2)+2))

α+δ2

)n−k

H

Γ(−k + n + 1)
,

where H = F̃1

(
1, k − n; k + 1; 1 − 2exβδ(δ2+α)

2δ2+α(δ(δxβ+2)xβ+2)

)
is regularized hypergeometric function.

4. Estimation methods of PMD

Seven methods for calculating the PMD’s parameters α, δ, and β are covered in this section. Determining
the distribution parameters using conventional estimating techniques has been made available to various
writers. Likely, ([7],[30], [8], [12], [33],[6], [18], [5], [20]).

Modern Journal of Statistics Volume 1, Issue 1, 1–24
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4.1. Maximum likelihood estimation

Let {x1, . . . , xn} be a random sample of size n from PMD(α, δ, β). Then, the corresponding log-likelihood
function can be given as

l(α, δ, β) = n ln β + 3n ln δ + (β − 1)
n∑

i=1

ln(xi) − δ
n∑

i=1

xβi +
n∑

i=1

ln(αx2β
i + 2) − 2n ln(α + δ2). (4.1)

Let α̂MLE, δ̂MLE, and β̂MLE denote the maximum likelihood estimators of α, δ, and β, respectively. They are
derived by solving the three non-linear equations accordingly.

∂l(α, δ, β)
∂α

=

n∑
i=1

x2β
i

αx2β
i + 2

−
2n
α + δ2 = 0,

∂l(α, δ, β)
∂δ

=
3n
δ
−

n∑
i=1

xβi −
4nδ
α + δ2 = 0,

and
∂l(α, δ, β)
∂β

=
n
β
−

n∑
i=1

ln(xi) − δ
n∑

i=1

xβi ln(xi) + 2α
n∑

i=1

x2β
i ln xi

αx2β
i + 2

= 0.

4.2. Least square and weighted least square estimators

Let x1, ..., xn be a random sample of size n from PMD and x(1) < ... < x(n) represent the order statistics
of the random sample from the PMD. The least-square estimator(LSE) (see [36]) of α, δ and β (say, α̂LS E,
δ̂LS E and β̂LS E) can be resulted by minimizing

n∑
i=1

[
F(x(i)|α, δ, β) −

i
n + 1

]2

,

where F(x|α, δ, β) is (2.3). Now, another technique of estimation, say the weighted least square estimators
(WLSEs) of α, δ, and β, note α̂WLS E, δ̂WLS E and β̂WLS E is expressed by minimize the equation

n∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F(x(i)|α, δ, β) −

i
n + 1

]2

.

4.3. Maximum product of spacings

Let
Di(α, δ, β) = F(x(i)|α, δ, β) − F(x(i−1)|λ, θ); i = 1, ..., n + 1,

with
F(x(0)|α, δ, β) = 0, and F(x(n+1)|α, δ, β) = 1.

It is clear that
n+1∑
i=1

Di(α, δ, β) = 1.

The maximum product spacing (MPS) estimators of α, δ, and β (α̂MPS , δ̂MPS and β̂MPS ), can be obtained by
maximizing

J(α, δ, β) =

 n+1∏
i=1

Di(α, δ, β)

1/(n+1)

. (4.2)
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4.4. Cramer-von Mises minimum distance estimators

The Cramer-von Mises-type minimum distance estimators (CMEs) α̂CME, δ̂CME and β̂CME are obtained
by minimizing

V(α, δ, β) =
1

12n
+

n∑
i=1

[
F(x(i)|α, δ, β) −

2i − 1
2n

]2

. (4.3)

4.5. Anderson-Darling and right-tail Anderson-Darling

Anderson-Darling estimators (ADEs) α̂ADE, δ̂ADE and β̂ADE of α, δ and β are calculated by minimizing

D(α, δ, β) = −n −
1
n

n∑
i=1

(2i − 1)
{
ln F(x(i)|α, δ, β) + ln S (x(n+1)|α, δ, β)

}
.

In the same sense, the Right-tail Anderson-Darling estimators (RADEs), α̂RADE, δ̂RADE and β̂RADE are
determined by minimizing

R(α, δ, β) =
n
2
− 2

n∑
i=1

ln F(x(i)|α, δ, β) −
1
n

n∑
i=1

(2i − 1) ln S (x(n+1)|α, δ, β).

5. Numerical simulation

Here, we provide some results from a Monte Carlo (MC) simulation study to show how the proposed
estimation procedures in Section 4 work. Under a given parameter set and over N = 1000 times, we obtain
a random observation taken from the PMD with size n by applying the solution of the non-linear equation
(3.2). After that, the average biases (ABs), the associated mean squared errors (MSEs), and the mean
relative errors (MREs) are computed. The results are reported in Tables (3)-(5) represent the result. Table
(3)-(5) shows that the ABs, MSEs, and MREs decrease as n increases based on all estimation methods,
which ensures that the proposed estimators are consistent and asymptotically unbiased. In addition, the
MPSEs are a better method of estimating the PMD by taking the MSE as an optimality criterion. Also, it is
shown that the MSEs rise for all estimate techniques as α, δ, and β rise.

6. Risk measures

Risk exposure is described through probability distributions. Actuaries and risk managers often use such
important risk indicators to assess the degree to which their organizations are vulnerable to certain risks
that result from changes in underlying factors like stock prices, interest rates, or exchange rates. In the
literature, numerous risk measures and their properties have been provided. For example on may refer to
[9], [23], [19], [39] and [28], and references therein. This section covers value at risk, tail values at risk,
and tail variance premium for the PMD.
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6.1. Value at risk

The value at risk (R1) is calculated for the PMD by finding the inverse of Equation (2.4) concerning x as
follows

e−δx
β

(
α

δ2 +
1
2
αx2β +

αxβ

δ
+ 1

)
=

(1 − p)(α + δ2)
δ2 .

6.2. Tail values at risk

Another significant risk indicator is the tail value at risk (R2). It calculates the anticipated loss given
an occurrence outside a certain probability threshold. It is determined for the PMD by using the following
relation

R2 =
1

(1 − p)

∫ ∞

R1

x f (x) dx =
δ−1/β

(
αΓ

(
3 + 1

β
, δRβ1

)
+ 2δ2Γ

(
1 + 1

β
, δRβ1

))
2
(
α + δ2) (1 − p)

,

where Γ(a, z) =
∫ ∞

z
ta−1e−tdt.

6.3. Tail variance premium

Another noteworthy statistic that plays a crucial role in the area of insurance sciences is the tail variance
premium (R3), and the following relation determines it

R3 = R2 + pR4,

where

R4 =
1

(1 − p)

∫ ∞

R1

x2 f (x)dx − (R2)2.

Then, it is determined for the PMD as follows

R3 =
δ−2/β

4(p − 1)2 (
α + δ2)2

−p
(
αΓ

(
3 +

1
β
, δRβ1

)
+ 2δ2Γ

(
1 +

1
β
, δRβ1

))2

− 2(p − 1)p
(
α + δ2

) (
αΓ

(
3 +

2
β
, δRβ1

)
+ 2δ2Γ

(
β + 2
β
, δRβ1

))
− 2(p − 1)

(
α + δ2

)
δ1/β

(
αΓ

(
3 +

1
β
, δRβ1

)
+ 2δ2Γ

(
1 +

1
β
, δRβ1

))]
.

6.4. Numerical computations for risk measures

This part presents the numerical results for R1, R2, and R3 of the PMD and TMD across different para-
metric values. The parameters were computed using the machine learning methodology. The three risk
measures were calculated based on the results of 1000 repetitions.

Tables 6 and 7 for the two comparable models include the numerical findings of these measures. We
presented the findings in Figures 3 and 4 for visual comparisons. These tables and figures indicate that the
PMD is denser than the MD, making it very appropriate for accommodating heavy-tailed data sets.
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Figure 3. Graphical plots of computational value of R1, R2 and R3 in Table 6.
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Figure 4. Graphical plots of computational value of R1, R2 and R3 in Table 7.

7. Real data analysis

In this part of the work, we considered the third-party motor insurance collected in 1977 in Sweden. The
data represents the total amount paid by the insurance company. It is available in [10]. Also, the dataset is
studied by [29] and [32]. All the data points are divided by 10000 for computational purposes. The values
of the data set are.
Table (9) provides some statistics of the motor insurance data. The PMD is compared with the various
models such as TPM, univariate Poisson gamma (UP-GA), which is introduced by Abdelghani et al. [1],
Normal, exponential geometric (EG), which Adamidis proposes [2], Gompertz, exponential (EXP) and
Power Lindley (PL) which is proposed by [21] distributions. The PDFs of the competing models are given
as follows

1. UP-GA:

f (x) =
θλαxα−1e−λx

(eθ − 1)Γ(α)
eθHα,λ(x); x > 0, α, λ, θ > 0.

where Hα,λ(x) is the CDF of gamma distribution.
2. Normal:

f (x) =
1

λ
√

2π
e
−

(x − α)2

2λ2 , x ∈ R, α ∈ R, λ > 0.
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3. EG:

f (x) =
pλe−λx

(p + (1 − p)e−λx)2 ; x > 0, λ > 0, 0 < p < 1.

4. Gompertz:
f (x) = αβe−β(e

αx−1)+αx, x > 0, α, β > 0.

5. EXP:
f (x) = λe−λx; x > 0, λ > 0.

6. PL:

f (x) =
αβ2

β + 1
(1 + xα) xα−1 e−βx

α

; x > 0, α, β > 0.

Table (10) reports the results of the MLEs of unknown parameters with the log-likelihood (ll) value. To
select the best model for modeling the insurance loss data set, the results of the Akaike Information Criterion
(A1), Akaike Information Criterion correction (A2, Hannan Quinn Information Criterion (A3), Bayesian
Information Criterion (A4), and Kolmogorov-Smirnov (K-S) statistics with associated p-values are reported
in Table (11). Table (11) shows that the PMD model is the best and most suitable candidate for modeling
the data set. The estimated PDF, CDF, survival function (SF), the scaled total time on a test (TTT), the
probability-probability (PP), and box plots are sketched in Figures (6), (5), and (7), respectively.
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Figure 5. TTT, PP and box curves using motor insurance data set.

The results for estimates of the unknown parameters for the PMD distribution using various proposed
estimation procedures are provided in Table (12).

8. Conclusion

This paper presents a unique probability distribution derived from the power transformation approach,
offering a more flexible and resilient framework for modeling empirical data. We methodically generated
and examined several statistical and mathematical aspects, such as moments, quantile functions, and order
statistics, to demonstrate the theoretical underpinnings of the suggested model. Additionally, we examined
several parameter estimation methods, evaluating their precision and efficacy using extensive simulation
analyses. The findings indicate that the suggested estimating techniques provide dependable and consis-
tent estimates, illustrating the practical feasibility of the model. To enhance its application, we calculated
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Figure 6. Estimated curves of PDF and CDF for proposed fitting models using motor insurance
data set.

essential risk metrics, underscoring our distribution’s significance in actuarial and financial domains. Fur-
thermore, we performed an empirical study using a genuine insurance loss dataset, assessing our model’s
goodness of fit compared to competing distributions. The results indicate that the proposed model excels in
capturing data features such as skewness and heavy tails, highlighting its use in risk assessment, reliability
analysis, and statistical modeling. Our suggested distribution is a substantial advancement in probabil-
ity and statistical modeling. Future studies may investigate its applicability across several fields, such as
banking, engineering, and environmental studies, while expanding its theoretical qualities to multivariate
contexts and Bayesian inference frameworks.
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Table 3. ABs, MSEs and MREs of PMD at (α, δ, β)=(0.75, 1.25, 1.5).

n Method α̂ δ̂ β̂

AB MSE MRE AB MSE MRE AB MSE MRE
30 MLE 0.9857 1.1164 1.3143 0.0992 0.1934 0.0793 0.0718 0.1359 0.0478

LSE 0.6305 1.3312 0.8406 0.1384 0.2402 0.1107 0.0717 0.1755 0.0478
WLSE 0.4891 1.0722 0.6522 0.0710 0.1591 0.0568 0.0186 0.1319 0.0124
CME 1.0389 1.6722 1.3852 0.1472 0.2496 0.1177 0.0250 0.1821 0.0166
MPS 0.5262 1.0662 0.7024 0.1558 0.1321 0.1246 0.1207 0.1042 0.0805
ADE 0.6405 1.1210 0.8540 0.1287 0.1710 0.1029 0.0201 0.1438 0.0134

RADE 0.8705 1.1925 1.1607 0.0774 0.1738 0.0619 0.0304 0.1537 0.0202

50 MLE 0.4406 0.4341 0.5875 0.2708 0.0733 0.2166 0.1739 0.0602 0.1159
LSE 0.2335 0.6235 0.3114 0.0373 0.0758 0.0299 0.0697 0.0870 0.0465

WLSE 0.1323 0.4277 0.1764 0.0183 0.0645 0.0147 0.0323 0.0772 0.0215
CME 0.3911 1.2170 0.5214 0.0916 0.1206 0.0733 0.0173 0.0913 0.0115
MPS 0.2862 0.3186 0.3816 0.0860 0.0625 0.0688 0.0901 0.0597 0.0601
ADE 0.2588 0.4425 0.3450 0.0603 0.0697 0.0482 0.0104 0.0796 0.0069

RADE 0.4562 0.5744 0.6083 0.0705 0.0873 0.0564 0.0085 0.0866 0.0056

100 MLE 0.3711 0.0602 0.4948 0.0786 0.0316 0.0629 0.0587 0.0359 0.0391
LSE 0.0478 0.1426 0.0637 0.0014 0.0363 0.0011 0.0155 0.0520 0.0103

WLSE 0.0415 0.0526 0.0553 0.0073 0.0259 0.0058 0.0017 0.0352 0.0011
CME 0.0959 0.1433 0.1279 0.0108 0.0392 0.0086 0.0211 0.0697 0.0141
MPS 0.0980 0.0447 0.1307 0.0551 0.0203 0.0441 0.0584 0.0257 0.0389
ADE 0.0491 0.0573 0.0655 0.0252 0.0265 0.0201 0.0034 0.0368 0.0022

RADE 0.0835 0.1412 0.1114 0.0124 0.0361 0.0099 0.0102 0.0345 0.0068

300 MLE 0.0329 0.0102 0.0438 0.0188 0.0059 0.0150 0.0441 0.0121 0.0294
LSE 0.0445 0.0423 0.0593 0.0105 0.0096 0.0084 0.0056 0.0146 0.0037

WLSE 0.0149 0.0087 0.0199 0.0125 0.0056 0.0100 0.0102 0.0079 0.0068
CME 0.0416 0.0475 0.0555 0.0126 0.0119 0.0101 0.0033 0.0149 0.0022
MPS 0.0385 0.0075 0.0513 0.0271 0.0052 0.0217 0.0319 0.0067 0.0213
ADE 0.0276 0.0108 0.0368 0.0022 0.0074 0.0018 0.0086 0.0083 0.0057

RADE 0.0370 0.0444 0.0493 0.0006 0.0108 0.0005 0.0157 0.0147 0.0105

500 MLE 0.0263 0.0039 0.0350 0.0089 0.0040 0.0071 0.0127 0.0057 0.0085
LSE 0.0177 0.0198 0.0236 0.0023 0.0067 0.0019 0.0003 0.0104 0.0002

WLSE 0.0107 0.0033 0.0142 0.0034 0.0033 0.0027 0.0019 0.0050 0.0012
CME 0.0172 0.0287 0.0229 0.0017 0.0074 0.0014 0.0021 0.0123 0.0014
MPS 0.0204 0.0023 0.0273 0.0200 0.0030 0.0160 0.0197 0.0046 0.0131
ADE 0.0057 0.0045 0.0076 0.0019 0.0038 0.0015 0.0029 0.0059 0.0019

RADE 0.0184 0.0231 0.0246 0.0029 0.0071 0.0023 0.0103 0.0112 0.0068
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Table 4. ABs, MSEs and MREs of PMD at (α, δ, β)=(1, 1.5, 1.75).

n Method α̂ δ̂ β̂

AB MSE MRE AB MSE MRE AB MSE MRE
30 MLE 1.0126 1.9753 1.0126 0.0990 0.3235 0.0660 0.0820 0.1459 0.0468

LSE 0.8314 2.9802 0.8314 0.1666 0.4988 0.1110 0.0614 0.3301 0.0350
WLSE 0.5498 1.8719 0.5498 0.1617 0.3207 0.1078 0.0650 0.2582 0.0371
CME 1.1209 5.3741 1.1209 0.1554 0.5118 0.1036 0.0263 0.3772 0.0150
MPS 0.6751 1.7101 0.6751 0.2261 0.2747 0.1507 0.1788 0.1694 0.1021
ADE 0.6382 2.7230 0.6382 0.0972 0.3314 0.0648 0.0265 0.2622 0.0151

RADE 0.8953 5.0925 0.8953 0.1588 0.4408 0.1058 0.0152 0.2636 0.0087

50 MLE 0.6502 1.9341 0.6502 0.0543 0.1668 0.0362 0.0345 0.1473 0.0197
LSE 0.2580 2.8194 0.2580 0.0403 0.1788 0.0269 0.0993 0.1684 0.0567

WLSE 0.4131 1.7525 0.4131 0.0653 0.1321 0.0435 0.0050 0.1370 0.0028
CME 0.9403 5.0313 0.9403 0.0576 0.1896 0.0384 0.0327 0.1897 0.0186
MPS 0.5643 1.4844 0.5643 0.1475 0.1299 0.0983 0.1262 0.1128 0.0721
ADE 0.4998 1.9652 0.4998 0.1029 0.1443 0.0686 0.0400 0.1374 0.0229

RADE 0.7473 4.7662 0.7473 0.0960 0.1613 0.0640 0.0316 0.1514 0.0180

100 MLE 0.3711 0.0602 0.4948 0.0621 0.0764 0.0414 0.0608 0.0779 0.0347
LSE 0.1236 0.7174 0.1236 0.0157 0.0772 0.0104 0.0471 0.0931 0.0269

WLSE 0.1203 0.5626 0.1203 0.0174 0.0607 0.0116 0.0343 0.0690 0.0196
CME 0.3738 1.2439 0.3738 0.0653 0.1089 0.0435 0.0004 0.1227 0.0002
MPS 0.2920 0.3388 0.2920 0.0907 0.0504 0.0605 0.1034 0.0525 0.0590
ADE 0.1071 0.6124 0.1071 0.0129 0.0616 0.0086 0.0809 0.0868 0.0462

RADE 0.2447 0.8525 0.2447 0.0186 0.0946 0.0124 0.0077 0.0920 0.0044

300 MLE 0.0547 0.0411 0.0547 0.0267 0.0125 0.0178 0.0158 0.0156 0.0090
LSE 0.0221 0.1098 0.0221 0.0053 0.0229 0.0035 0.0255 0.0307 0.0145

WLSE 0.0439 0.0384 0.0439 0.0161 0.0117 0.0107 0.0138 0.0137 0.0079
CME 0.0206 0.1305 0.0206 0.0103 0.0259 0.0068 0.0296 0.0351 0.0169
MPS 0.1252 0.0280 0.1252 0.0394 0.0104 0.0262 0.0596 0.0120 0.0340
ADE 0.0065 0.0487 0.0065 0.0072 0.0150 0.0048 0.0296 0.0246 0.0169

RADE 0.1453 0.1153 0.1453 0.0421 0.0325 0.0280 0.0206 0.0349 0.0117

500 MLE 0.0113 0.0315 0.0113 0.0123 0.0107 0.0082 0.0269 0.0117 0.0154
LSE 0.0152 0.0601 0.0152 0.0040 0.0134 0.0027 0.0118 0.0168 0.0067

WLSE 0.0088 0.0232 0.0088 0.0021 0.0075 0.0014 0.0104 0.0115 0.0059
CME 0.0090 0.0663 0.0090 0.0092 0.0139 0.0061 0.0224 0.0206 0.0128
MPS 0.0615 0.0210 0.0615 0.0240 0.0069 0.0160 0.0255 0.0111 0.0146
ADE 0.0192 0.0241 0.0192 0.0078 0.0089 0.0052 0.0217 0.0124 0.0124

RADE 0.0615 0.0652 0.0615 0.0137 0.0137 0.0091 0.0057 0.0172 0.0032
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Table 5. ABs, MSEs and MREs of PMD at (α, δ, β)=(1.8, 2.5, 2.75).

n Method α̂ δ̂ β̂

AB MSE MRE AB MSE MRE AB MSE MRE
30 MLE 0.0260 0.0013 0.0144 0.1151 0.2986 0.0460 0.4978 0.4423 0.1810

LSE 0.0159 0.0035 0.0088 0.2689 0.7407 0.1075 0.1986 0.7833 0.0722
WLSE 0.0273 0.0050 0.0151 0.4215 0.6421 0.1686 0.2370 1.0165 0.0862
CME 0.0315 0.0056 0.0175 0.5011 0.4726 0.2004 0.4499 0.6732 0.1636
MPS 0.0168 0.0008 0.0093 0.1265 0.2829 0.0506 0.1851 0.4270 0.0673
ADE 0.8705 1.3562 0.4836 1.0175 1.1861 0.4070 0.6024 1.9488 0.2190

RADE 1.0956 5.2943 1.0923 0.4009 0.6911 0.3571 0.2652 0.2636 0.0087

50 MLE 0.0145 0.0004 0.0080 0.0898 0.2364 0.0359 0.6810 0.4293 0.2476
LSE 0.0203 0.0025 0.0113 0.1201 0.3858 0.0480 0.6180 0.6031 0.2247

WLSE 0.03103 0.0023 0.0172 0.2513 0.4227 0.1005 0.3728 0.4752 0.1355
CME 0.02090 0.0042 0.0116 0.0350 0.3723 0.0140 0.0544 0.4711 0.0197
MPS 0.0245 0.0006 0.0136 0.37768 0.2125 0.1510 0.3097 0.2141 0.1126
ADE 1.3860 1.0551 0.7700 0.7495 0.8075 0.2998 0.4478 1.9374 0.1628

RADE 1.3660 1.3051 1.0228 0.9995 1.0575 0.5498 0.9678 2.1874 0.4128

100 MLE 0.0078 0.0003 0.0043 0.1504 0.1730 0.0601 0.2922 0.3335 0.1062
LSE 0.02019 0.0020 0.0112 0.1767 0.2621 0.0707 0.8521 0.5167 0.3098

WLSE 0.0168 0.0021 0.0093 0.1047 0.3412 0.04190 0.2569 0.3283 0.0934
CME 0.0450 0.0037 0.0250 0.1324 0.3387 0.0529 0.0458 0.3973 0.0166
MPS 0.0255 0.0002 0.0142 0.0028 0.1479 0.0011 0.1997 0.2051 0.0726
ADE 1.6119 1.0188 0.8955 0.9167 0.7861 0.3667 1.2723 0.9152 0.4626

RADE 1.8619 1.2688 1.3455 1.3667 1.0361 0.6167 1.5223 1.1652 0.7126

300 MLE 0.0138 0.0003 0.0076 0.1907 0.1345 0.0763 0.3381 0.2560 0.1229
LSE 0.0026 0.0015 0.0014 0.06601 0.2029 0.0264 0.0466 0.4551 0.0169

WLSE 0.0118 0.0014 0.0065 0.0183 0.2523 0.0073 0.2238 0.2785 0.0814
CME 0.0035 0.0031 0.0019 0.0717 0.2474 0.0286 0.1209 0.3600 0.0439
MPS 0.01202 0.0002 0.0066 0.0849 0.1255 0.0339 0.2636 0.1527 0.0958
ADE 1.3526 0.9154 0.7514 0.9206 0.7474 0.3682 0.5686 0.7939 0.2067

RADE 1.6026 1.1615 0.7514 1.0706 0.9974 0.6182 0.8186 1.0439 0.4567

500 MLE 0.0072 0.0002 0.0040 0.0342 0.0870 0.0136 0.1530 0.1203 0.0556
LSE 0.0020 0.0015 0.0011 0.1965 0.1318 0.0786 0.07387 0.3873 0.0268

WLSE 0.01050 0.0010 0.0058 0.0082 0.0925 0.0032 0.2799 0.2284 0.1017
CME 0.0131 0.0022 0.0073 0.1099 0.1769 0.0439 0.3233 0.2743 0.1175
MPS 0.0138 0.0001 0.0076 0.2010 0.0790 0.0804 0.2735 0.1074 0.0994
ADE 1.5673 0.4748 0.8707 0.9104 0.7169 0.3641 0.3749 0.4499 0.1363

RADE 1.8173 0.7248 1.1207 1.1604 0.9669 0.6141 0.6249 0.6999 0.3863
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Table 6. Numerical computations of R1, R2 and R3 for the PMD and MD.

Distribution Parameters Significance Level R1 R2 R3

PMD α = 0.25, , δ = 0.5, β = 0.75

0.60 6.42203 14.66596 57.98484
0.65 7.50493 15.76808 62.97213
0.70 8.76048 17.04336 68.22528
0.75 10.25036 18.55553 73.84361
0.80 12.07897 20.41185 79.99503
0.85 14.44345 22.81451 86.99481
0.90 17.78991 26.22053 95.55478
0.95 23.55705 32.10349 107.94750

MD α = 0.25, δ = 0.5

0.60 3.99507 7.35744 13.00944
0.65 4.51089 7.80154 13.75866
0.70 5.08561 8.30304 14.53503
0.75 5.74066 8.88260 15.35582
0.80 6.51178 9.57464 16.24935
0.85 7.46538 10.44305 17.26975
0.90 8.74856 11.63023 18.53438
0.95 10.82286 13.58311 20.43073

Table 7. Numerical computations of R1, R2 and R3 for the PMD and MD.

Distribution Parameters Significance Level R1 R2 R3

PMD α = 2, , δ = 1.5, β = 0.5

0.60 1.69791 6.77850 34.11604
0.60 2.16748 7.47203 38.77419
0.65 2.75806 8.30876 44.14104
0.70 3.51707 9.34645 50.46666
0.75 4.52832 10.68383 58.17927
0.80 5.95469 12.51303 68.08405
0.85 8.18180 15.28311 82.02290
0.90 12.53011 20.51401 106.04209

MD α = 2, , δ = 1.5

0.60 1.27819 2.39278 3.01885
0.60 1.44820 2.54008 3.20065
0.65 1.63803 2.70661 3.39830
0.70 1.85488 2.89906 3.61870
0.75 2.11046 3.12915 3.87229
0.80 2.42690 3.41813 4.17950
0.85 2.85328 3.81350 4.58555
0.90 3.54361 4.46482 5.23332

Table 8. The values for the Swedish motor insurance data set.

77.585 11.839 14.084 9.006 13.581 51.080 8.255 22.292 20.295 8.538
19.038 10.597 22.261 46.244 18.603 47.495 9.253 44.278 18.455 11.936
6.378 43.676 30.465 16.781 11.469 21.026 15.583 6.085 16.182 42.369
1.688 7.229

Modern Journal of Statistics Volume 1, Issue 1, 1–24



20

Table 9. Basic statistics of Swedish motor insurance data set

Mean Median Std.Dev Q1 Q3 γ3 γ4

21.989 16.482 17.202 10.261 24.335 1.365 1.357

Table 10. The estimation parameters with log-likelihood (ll) values using numerous proposed
models

Model Parameters ll
PMD α̂=6.2772 δ̂=0.2689 β̂=0.7918 -127.303

TPM α̂=0.1286 δ̂=0.1781 -128.850

UP-GA α̂ = 1.9610 λ̂=0.0938 θ̂=0.3015 -127.670

Normal α̂=21.988 λ̂=16.931 -135.939

EG λ̂=0.0771 p̂=0.3260 -129.100

Gompertz α̂=0.0154 λ̂=0.0335 -129.732

EXP λ̂=0.0454 -130.897

PL α̂=1.0149 β̂=0.0831 -128.710

Table 11. The goodness of fit tests for Swedish motor insurance data set.

Distribution A1 A2 A3 A4 K-S p-value
PMD 260.607 261.464 262.065 264.004 0.1379 0.531

TPM 261.700 262.114 262.672 264.632 0.1695 0.2834

UP-GA 261.341 262.198 262.799 265.738 0.1560 0.3775

Normal 275.879 276.292 276.850 278.810 0.2428 0.0380

EG 262.201 262.615 263.173 265.132 0.1509 0.4183

Gompertz 263.464 263.878 264.436 266.396 0.1615 0.3371

EXP 263.794 263.927 264.280 265.260 0.2104 0.1010

PL 261.420 261.833 262.391 264.351 0.1504 0.4220
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Figure 7. Plots of the ESF and fitted survival functions for proposed fitting models using motor
insurance data set.

Table 12. The estimates of α, δ and β under various estimation procedures.

Par MLE LSE WLSE CME MPS ADE RTADE
α̂ 6.2772 1.5616 1.6435 1.5456 1.7709 1.5103 2.6942
δ̂ 0.2689 0.3919 0.4939 0.3856 0.5119 0.3670 0.3928
β̂ 0.7918 0.6356 0.5593 0.6465 0.6140 0.6653 0.6576
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distribution and its applications to the real data. Communications Faculty of Sciences University of Ankara
Series A1 Mathematics and Statistics, 71(1):252–272.

Modern Journal of Statistics Volume 1, Issue 1, 1–24



23

16.Dhungana, G. P. and Kumar, V. (2022). Exponentiated odd lomax exponential distribution with applica-
tion to covid-19 death cases of nepal. PloS one, 17(6):e0269450.

17.Eghwerido, J. T., Zelibe, S. C., and Efe-Eyefia, E. (2020). Gompertz-alpha power iverted exponential
distribution: Properties and applications. Thailand Statistician, 18(3):319–332.

18.El Alosey, A. R. and Gemeay, A. M. (2025). A novel version of geometric distribution: Method and
application. Computational Journal of Mathematical and Statistical Sciences, 4(1):1–16.

19.Elbatal, I., Hassan, A. S., Gemeay, A. M., Diab, L. S., Ben Ghorbal, A., and Elgarhy, M. (2024). Statis-
tical analysis of the inverse power zeghdoudi model: Estimation, simulation and modeling to engineering
and environmental data. Physica Scripta, 99(6).

20.Elsehetry, M. M., Shawki, A. W., Khalil, M. G., and Helal, T. S. (2024). On fitting renewable energy
sources data: Using a new trigonometric statistical model. Computational Journal of Mathematical and
Statistical Sciences, 3(2):389–417.

21.Ghitany, M. E., Al-Mutairi, D. K., Balakrishnan, N., and Al-Enezi, L. (2013). Power lindley distribution
and associated inference. Computational Statistics and Data Analysis, 64:20–33.
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