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ABSTRACT 
This study aims to extend the Odd Lomax Generalized Exponential (OLGE) 

distribution to include neutrosophic data, which are generalized by uncertainty 

and ambiguity. It's done formulate a new probabilistic model based on 

combining Neutrosophic Logic (NL) with Odd Lomax Generalized 

Exponential to improve the model's flexibility in dealing with data with 

uncertain and contradictory shapes. The density function and probability 

distribution of the proposed neutrosophic model are defined, and some 

mathematical properties are derived as neutrosophic survival, neutrosophic 

hazard, Incomplete Moments, and Neutrosophic Quantile. In addition, we 

present new method for parameter estimation using neutrosophic simulation for 

three techniques (MLE, LSE, WLSE), and compare the model's performance 

with other model using information criteria and statistical measures. The model 

is applied to a real neutrosophic data set characterized by uncertainty (the life 

in 100 hours of 23 batteries), demonstrating its efficiency in analyzing 

ambiguous data when compared to other neutrosophic distributions.
 

 

 

1. Introduction 
In recent years, modeling data with ambiguous of uncertain nature has become a major challenge in many fields such as engineering, 

medical sciences, and economics. Despite significant progress in the development of probability distributions, most current models rely 

on traditional data assumptions that assume certainty and clarity, limiting their effectiveness in dealing with neutrosophic data 

characterized by uncertainty and contradiction. Therefore, a number of neutrosophic distributions have recently emerged that address this 

type of data. Examples include: neutrosophic HWIR [1], Neutrosophic Lindley [2], neutrosophic Generalized pareto [3], neutrosophic 
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exponentiated inverse Rayleigh [4], neutrosophic inverse Gompertz [5], neutrosophic Beta-Lindley [6], neutrosophic Burr XII [7], 

Neutrosophic inverse power Lindley [8], Neutrosophic Topp-Leone [9], and neutrosophic Topp-Leone [8]. 

Despite the introduction of these neutrosophic distributions, adding additional parameters to the underlying distribution and integrate 
it with NL is almost nonexistent. Therefore, the underlying distribution is combined with Odd Lomax family, there the Odd Lomax 

Generalized Exponential has CDF and PDF functions, respectively, in the form [9]: 

𝐹(𝑥) = 1 − (1 −
(1 − 𝑒−𝑏𝑥)𝑐 . 𝑙𝑜𝑔(1 − (1 − 𝑒−𝑏𝑥)𝑐)

𝑢
)

−𝑟

 (1.1) 

𝑓(𝑥) =
𝑟𝑏𝑐𝑒−𝑏𝑥(1 − 𝑒−𝑏𝑥)𝑐−1 [

(1 − 𝑒−𝑏𝑥)𝑐

1 − (1 − 𝑒−𝑏𝑥)𝑐 − log(1 − (1 − 𝑒−𝑏𝑥)𝑐)]

𝑢 (1 −
(1 − 𝑒−𝑏𝑥)𝑐 . 𝑙𝑜𝑔(1 − (1 − 𝑒−𝑏𝑥)𝑐)

𝑢
)

(𝑟+1)  (1.2) 

 The research gap lies in the lack of probability distributions capable of integrating NL, which addresses ambiguity and uncertainty 

using concepts such as neutrosophic sets. Therefore, this study aims to develop a theoretical and applied framework for OLGE in 

neutrosophic context, allowing for more flexible analysis of complex data. 

 The study aims to develop a neutrosophic version of OLGE distribution by defining the density functions and 

probability distribution, deriving the mathematical properties of the model, such as quantile function and incomplete 

Moments, introducing new estimation methods based on neutrosophic simulations, and the comparing the performance of 

the proposed model with other models using statistical criteria. The model was applied to real data related to the lifetime 

of 23 batteries over 100 hours, demonstrating its superiority in handling ambiguous data compared to traditional 

distributions. This study contributes to bridging the gap between probability theory and NL, opening new horizons for 

applications in multiple fields. 

2. Neutrosophic Odd Lomax Generalized Exponential 
Assume 𝑋𝑁 = 𝑑 + 𝑡𝐼, 𝑡𝐼 ∈ [𝑋𝐿 , 𝑋𝑈], where 𝑋𝐿, 𝑋𝑈 are lower and upper values of the neutrosophic Odd Lomax Generalized Exponential 

distribution (NOLGE) random variable having determined part 𝑑 and indeterminate part 𝑡𝐼, 𝑡𝐼 ∈ [𝐼𝐿 , 𝐼𝑈]. Note that the NOLGE reduces 

to classical Chen when 𝑋𝐿 = 𝑋𝑈. The neutrosophic cumulative density (NCDF), and neutrosophic probability density  (NPDF) of NOLGE 

has a Neutrosophic shape parameters 𝑟𝑁 ∈ [𝑟𝐿 , 𝑟𝑈 ], 𝑢𝑁 ∈ [𝑢𝐿, 𝑢𝑈]𝑏𝑁 ∈ [𝑏𝐿 , 𝑏𝑈], and 𝑐𝑁 ∈ [𝑐𝐿 , 𝑐𝑈], has the form [9]: 

𝐹(𝑥𝑁) = 1 − (1 −
(1 − 𝑒−𝑏𝑁𝑥𝑁 )𝑐𝑁 . 𝑙𝑜𝑔(1 − (1 − 𝑒−𝑏𝑁𝑥𝑁 )𝑐𝑁)

𝑢𝑁

)

−𝑟𝑁

 (2.1) 

𝑓(𝑥𝑁) =

𝑟𝑁𝑏𝑁𝑐𝑁𝑒−𝑏𝑁𝑥𝑁[
(1−𝑒−𝑏𝑁𝑥𝑁)

𝑐𝑁

1−(1−𝑒−𝑏𝑁𝑥𝑁)
𝑐𝑁

−log(1−(1−𝑒−𝑏𝑁𝑥𝑁)
𝑐𝑁)]

𝑢𝑁(1−𝑒−𝑏𝑁𝑥𝑁)
1−𝑐𝑁(1−

(1−𝑒−𝑏𝑁𝑥𝑁)
𝑐𝑁

.𝑙𝑜𝑔(1−(1−𝑒−𝑏𝑁𝑥𝑁)
𝑐𝑁

)

𝑢𝑁
)

(𝑟𝑁+1)
  (2.2) 

The neutrosophic survival function (𝑆𝑁) has a form [1]: 

𝑆𝑁(𝑥𝑁) = (1 −
(1 − 𝑒−𝑏𝑁𝑥𝑁 )𝑐𝑁 . 𝑙𝑜𝑔(1 − (1 − 𝑒−𝑏𝑁𝑥𝑁 )𝑐𝑁)

𝑢𝑁

)

−𝑟𝑁

 (2.3) 

While the neutrosophic hazard function (ℎ𝑁) has a form [11]: 

ℎ𝑁(𝑥𝑁) =

𝑟𝑁𝑏𝑁𝑐𝑁𝑒−𝑏𝑁𝑥𝑁[
(1−𝑒−𝑏𝑁𝑥𝑁)

𝑐𝑁

1−(1−𝑒−𝑏𝑁𝑥𝑁)
𝑐𝑁

−log(1−(1−𝑒−𝑏𝑁𝑥𝑁)
𝑐𝑁)]

𝑢𝑁(1−𝑒−𝑏𝑁𝑥𝑁)
1−𝑐𝑁(1−

(1−𝑒−𝑏𝑁𝑥𝑁)
𝑐𝑁

.𝑙𝑜𝑔(1−(1−𝑒−𝑏𝑁𝑥𝑁)
𝑐𝑁

)

𝑢𝑁
)

  (2.4) 

Figure 1 shows the NCDF function with varying parameter intervals, while Figure 2 shows the NPDF function with varying parameter 

values. Figure 3 provides a three-dimensional representation of NCDF, while Figure 4 shows a three-dimensional representation of the 

NPDF. Figure 5 illustrates the neutrosophic survival function curve with varying parameter intervals. 
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Figure.1 plot the NCDF function for NOLGE 

 

Figure.2 plot the NPDF function for NOLGE 

 

Figure.3 3D-plot the NCDF function for NOLGE 
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Figure.4 3D-plot the NCDF function for NOLGE 

 

Figure.5 plot the survival function for NOLGE 

Figure 1 shows the curves illustrating how the shape of function changes at the parameters take values within uncertain 
intervals. The variance in the curves reflects the flexibility of distribution in representing uncertain data, as the distribution 

can adapt to uncertainties and ambiguities in data. 

Figure 2 shows that shape of function changes based on parameters values, demonstrating distribution's ability to model 
data with divers shapes (such as skewed or multi-peaked data). This flexibility makes the distribution suitable for analyzing 

complex data characterized by uncertainty. 

Figure 3 shows the relationship between random variable and uncertain parameters in three dimensions. The three 

dimensions representation helps understand how the parameters interact with each other and how they affect the shape of the 
cumulative function. 

Figure 4 shows the NCDF in three dimensions, showing how the density changes as the parameters change. This 

representation is useful for understanding the behavior of distribution when modeling uncertain data, especially in case where 
the data is uncertain or inconsistent. 

Figure 5 depicts the survival function, which is important in analyzing temporal data, such as battery life data mentioned 

in the study, as it helps estimate the probability of a system surviving for specific period of time. 

These figures enhance understanding of the mathematical properties and practical applications of NOLGE distribution, 

demonstrating its superiority over conventional distributions in analyzing uncertain data. 
 

3. Properties for NOLGE distribution 

3.1 Expansion Basic functions for NOLGE   
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The NCDF expansion for NOLGE distribution using binomial series, logarithm expansion and exponential expansion series has a 

form [11], [12]: 

𝐹(𝑥𝑁) = 1 − Β𝑒−𝑧𝑁𝑏𝑁𝑥𝑁 (3.1) 

where Β = ∑
Γ(𝑟𝑁+𝑘𝑁)𝑢𝑁

−𝑘(−1)𝑖𝑁+𝑗𝑁+𝑣𝑁+𝑧𝑁𝑑𝑘𝑁,𝑖𝑁

𝑘𝑁!𝛤(𝑟𝑁)
(2𝑘𝑁+1

𝑗𝑁
) (𝑗𝑁

𝑣𝑁
)∞

𝑘𝑁=𝑖𝑁=𝑣𝑁=𝑗𝑁=𝑧𝑁=0 (
𝑣𝑁𝑐𝑁

𝑧𝑁
) 

The NPDF expansion for NOLGE distribution by same way in NCDF expansion has a form: 

𝑓(𝑥𝑁) = 𝜙𝑒−(𝑝𝑁+1)𝑏𝑁𝑥𝑁 − 𝜓𝑒−(𝑞𝑁+1)𝑏𝑁𝑥𝑁 (3.2) 

where  

𝜙 = ∑
(−1)𝑖𝑁+𝑡𝑁+𝑗𝑁+𝑧𝑁+𝑝𝑁 𝑑𝑘𝑁,𝑖𝑁

𝑟𝑁  𝛤(𝑟𝑁 + 1 + 𝑘𝑁)

𝑘𝑁! 𝛤(𝑟𝑁 + 1)𝑢𝑁
(𝑘𝑁+1) 𝑐𝑁𝑏𝑁

∞

𝑘𝑁=𝑖𝑁=𝑡𝑁=𝑗𝑁=𝑧𝑁=𝑝𝑁=0

(
2𝑘𝑁 + 𝑖𝑁

𝑗𝑁

) (
𝑗𝑁

𝑡𝑁

) (
(𝑡𝑁 + 𝑧𝑁 + 1)𝑐𝑁 − 1

𝑝𝑁

) 

and  

𝜓 = ∑
𝑟𝑁 (−1)𝑖𝑁+𝑠𝑁+𝑛𝑁+𝑞𝑁 𝑑𝑘𝑁,𝑖𝑁

𝑟𝑁  𝛤(𝑟𝑁 + 1 + 𝑘𝑁)

𝑘𝑘𝑁! 𝛤(𝑟𝑁 + 1)𝑢𝑁
(𝑘𝑁+1) 𝑐𝑁𝑏𝑁

∞

𝑘𝑁=𝑙𝑁=𝑠𝑁=𝑛𝑁=𝑞𝑁=0

(
2𝑘𝑁 + 𝑙𝑁 + 1

𝑠𝑁

) (
𝑠𝑁

𝑛𝑁

) (
(𝑛𝑁 + 1)𝑐𝑁 − 1

𝑞𝑁

) 

3.2 Neutrosophic Moments function for NOLGE 
Let 𝑋𝑁 be any neutrosophic random variable with NPDF in equation 8. The neutrosophic 𝑚𝑡ℎ moment for NOLGE is calculated by 

form [13]: 

𝜇𝑚,𝑁 = 𝐸(𝑥𝑁) = ∫ 𝑥𝑁
𝑚

∞

0

𝑓(𝑥𝑁)𝑑𝑥𝑁  

𝜇𝑚,𝑁 = 𝜙 ∫ 𝑥𝑁
𝑚

∞

0

𝑒−(𝑝𝑁+1)𝑏𝑁𝑥𝑁𝑑𝑥𝑁 − 𝜓 ∫ 𝑥𝑁
𝑚

∞

0

𝑒−(𝑞𝑁+1)𝑏𝑁𝑥𝑁 𝑑𝑥𝑁  

Then the final form for 𝜇𝑚,𝑁 given as: 

𝜇𝑚,𝑁 =
𝑚!

𝑏𝑁
𝑚+1 (

𝜙

(𝑝𝑁 + 1)𝑚+1
−

𝜓

(𝑞𝑁 + 1)𝑚+1
) (3.3) 

We can get a first four Neutrosophic Moments by forms: 

𝜇1,𝑁 =
1

𝑏𝑁
2 (

𝜙

(𝑝𝑁 + 1)2
−

𝜓

(𝑞𝑁 + 1)2
) (3.4) 

𝜇2,𝑁 =
2

𝑏𝑁
3 (

𝜙

(𝑝𝑁 + 1)3
−

𝜓

(𝑞𝑁 + 1)3
) (3.5) 

𝜇3,𝑁 =
6

𝑏𝑁
4 (

𝜙

(𝑝𝑁 + 1)4
−

𝜓

(𝑞𝑁 + 1)4
) (3.6) 

𝜇4,𝑁 =
24

𝑏𝑁
5 (

𝜙

(𝑝𝑁 + 1)5
−

𝜓

(𝑞𝑁 + 1)5
) (3.7) 

The neutrosophic variance, neutrosophic skewness, and neutrosophic kurtoses respectively has a forms [14], [15]: 

𝑣𝑎𝑟𝑁 (𝑥𝑁) =
2

𝑏𝑁
3 (

𝜙

(𝑝𝑁 + 1)3
−

𝜓

(𝑞𝑁 + 1)3
) −

1

𝑏𝑁
4 (

𝜙

(𝑝𝑁 + 1)2
−

𝜓

(𝑞𝑁 + 1)2
)

2

 (3.8) 

𝑆𝐾𝑁(𝑥𝑁) =

6
𝑏𝑁

4 (
𝜙

(𝑝𝑁 + 1)4 −
𝜓

(𝑞𝑁 + 1)4)

(
2

𝑏𝑁
3 (

𝜙
(𝑝𝑁 + 1)3 −

𝜓
(𝑞𝑁 + 1)3))

3
2

 
(3.9) 

𝐾𝑈𝑁(𝑥𝑁) =
6 (

𝜙
(𝑝𝑁 + 1)5 −

𝜓
(𝑞𝑁 + 1)5)

𝑏𝑁 (
𝜙

(𝑝𝑁 + 1)3 −
𝜓

(𝑞𝑁 + 1)3)
2 (3.10) 

The table below provides a comprehensive statistical analysis of NOLGE based on various parameters. The table contains the 

statistical moments (𝜇1,𝑁 , 𝜇2,𝑁 , 𝜇3,𝑁 , 𝜇4,𝑁), variance (𝑣𝑎𝑟𝑁), skewness coefficient (𝑆𝐾𝑁), and kurtosis coefficient (𝐾𝑈𝑁), with all values 

represented as neutrosophic intervals [lower, upper] that reflect the degree of uncertainty in the results. 

Table.1 statistical moments, variance, skewness, and kurtosis for selected parameter intervals of NOLGE  

𝒓𝑵 𝒖𝑵 𝒃𝑵 𝒄𝑵 𝜇1,𝑁 𝜇1,𝑁 𝜇1,𝑁 𝜇1,𝑁 𝑣𝑎𝑟𝑁 𝑆𝐾𝑁 𝐾𝑈𝑁 

[0
.3

,1
.3

] 

[0
.5

,1
.5

] 

[0.4,1.4] 

[0.1,1.1] 
[0.058564, 
0.299825] 

[0.029881, 
0.193303] 

[0.020049, 
0.139349] 

[0.015084, 
0.10776] 

[0.026451, 
0.103408] 

[1.639623, 
3.881547] 

[2.883882, 
16.89464] 

[0.2,1.2] 
[0.097579, 
0.299348] 

[0.050177, 
0.1971] 

[0.033553, 
0.143782] 

[0.025167, 
0.111996] 

[0.040655, 
0.107491] 

[1.643135, 
2.985262] 

[2.882894, 
9.995964] 

[0.6,1.6] 
[0.3,1.3] 

[0.12956, 
0.318846] 

[0.067646, 
0.207837] 

[0.045186, 
0.150303] 

[0.033813, 
0.116271] 

[0.05086, 
0.106175] 

[1.586291, 
2.568261] 

[2.691684, 
7.389141] 

[0.4,1.4] [0.152708, [0.083128, [0.056171, [0.042213, [0.059809, [1.589088, [2.690553, 
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0.318653] 0.211455] 0.154517] 0.120304] 0.109916] 2.343623] 6.108697] 

[0
.7

,1
.7

] 

[0.8,1.8] 

[0.5,1.5] 
[0.200816, 
0.357159] 

[0.106988, 
0.23159] 

[0.07097, 
0.166189] 

[0.052653, 
0.127607] 

[0.066661, 
0.104027] 

[1.491155, 
2.028032] 

[2.37923, 
4.599972] 

[0.6,1.6] 
[0.221018, 
0.358536] 

[0.123009, 
0.236296] 

[0.082893, 
0.171222] 

[0.061916, 
0.132276] 

[0.074159, 
0.107748] 

[1.490643, 
1.92139] 

[2.369009, 
4.092004] 

[0.9,1.9] 

[0.7,1.7] 
[0.237972, 
0.367066] 

[0.135233, 
0.241892] 

[0.091671, 
0.17501] 

[0.068581, 
0.134959] 

[0.078602, 
0.107155] 

[1.471057, 
1.843362] 

[2.30652, 
3.750054] 

[0.8,1.8] 
[0.249138, 
0.367714] 

[0.147009, 
0.245793] 

[0.101336, 
0.179396] 

[0.07645, 
0.13912] 

[0.084939, 
0.110579] 

[1.472173, 
1.79784] 

[2.302782, 
3.537481] 

Table 1 shows that the distribution is positive and right-skewed in all cases. Some parameters, particularly the kurtosis coefficient, 

have high uncertainty, which may indicate that the distribution is suitable for modeling data with extreme values. Increasing some 

parameters (such as 𝑏𝑁 and 𝑐𝑁) reduces the variance and skewness, making the distribution more stable. The distribution is also suitable 

for data with heavy tails (such as financial risk analysis and rare medical data). In short, this table provides a powerful tool for analyzing 
probability distributions under uncertainty, making it useful in real-world applications where data are uncertain or ambiguous. 

3.3 Neutrosophic Quantile function for NOLGE 
The Neutrosophic Quantile function represents in the inverse of NCDF function and it expressed by the relationship [16]: 

𝑞𝑁 = 𝐹(𝑥𝑁)  

For each 𝑞𝑁 ∈ (0,1) and 𝐹(𝑥𝑁) is NCDF for NOLGE distribution. 

Then a final form for it can be expressed as: 

𝑥𝑁 =
−1

𝑏𝑁

log {1 − [
Θ

Θ + 𝑊−1(Θ𝑒−Θ)
]

1
𝑐𝑁

} , Θ = 𝑢𝑁 −
𝑢𝑁

(1 − 𝑞𝑁)
1
𝛼

  (3.11) 

The following table presents the quantile values of the NOLGE neutrosophic distribution for a range of different parameters. 

 
Table.2 The Neutrosophic Quantile for selected parameter intervals of NOLGE distribution 

𝑞𝑁 
𝑟𝑁 , 𝑢𝑁 , 𝑏𝑁 , 𝑐𝑁 

[0.3,1.3],[0.5,1.5],[0.7,1.

7],[0.9,1.9] 

[0.6,1.6],[0.4,1.4],[0.8,

1.8],[0.5,1.5] 

0.3,1.3],[0.5,[0.6,1.6],[

1.5],[0.7,1.7] 

[0.7,1.7],[0.5,1.5], 

[0.9,1.9],[0.2,1.2] 

[0.8,1.8],[0.9,1.9],[0.7,1.

7],[0.4,1.4] 

0.1 ]0.4258823 0.3402208,[ ]0.35240 0.1940932,[ ]0.4947905,0.7349827[ ]0.2578218 0.00708521,[ ]0.3178744 0.0662213,[ 

0.2 ]0.5695547,0.5704234[ ]0.4977096 0.45907,[ ]0.6848535,1.5192220[ ]0.3824720 0.0459328,[ 0.450276] 0.17026888,[ 

0.3 ]0.6991737,0.8317391[ ]0.6349814,0.8618342[ ]0.8642528,2.7368166[ ]0.5028108 0.1553307,[ ]0.316630,0.57234[ 

0.4 ]0.8344206,1.1717438[ ]0.7839862,1.5409015[ ]1.0598887,5.0266177[ ]0.6347834 ,0.4153965[ ]0.525888,0.7007074[ 

0.5 ]0.9897702,1.6710243[ ]0.9620333,2.8525751[ ]1.2959503,3.2297234[ ]0.7932117.01385864[ 0.8480456] 0.839717,[ 

0.6 ]1.1858321,2.5253364[ ]1.1969081,5.8297463[ ]1.6119157,3.5344538[ ]0.793211,2.443785774[ ]1.0323835,1.34996091[ 

0.7 ]1.4650502,4.3768239[ ]1.5492546,3.5982321[ ]2.0963920,4.4850896[ ]1.0020368,6.084397682[ ]1.2896904,2.29675352[ 

0.8 ]1.9468935,10.1428781[ ]2.1963977,4.3031565[ ]3.0124143,4.8598500[ ]1.3132275,1.878408378[ ]1.7167602,4.50057007[ 

0.9 ]3.1848604,42.2787895[ ]3.9448324,4.4141649[ ]5.5590296,7.8599556[ ]1.8762819,3.800471633[ 2.7295857 ,2.30976829[ 

From above table, we notice that the values generally increase as 𝑞𝑁 increases from 0.1 to 0.9, as the ranges (the difference 

between the upper and lower limits) widen with increasing 𝑞𝑁. Some columns also show very high extreme values at 𝑞𝑁 = 0.9. third 
column shows the highest values in general, while the fourth column shows the largest ranges and changes in the values. The fifth column 

shows an average behavior among the columns. 

3.4 Neutrosophic Moment Generating Function 
The NMGF for NOLGE distribution from Equation (3.3), and using exponential expansion has a final form [17]: 

𝑀𝑁𝑥(𝑡𝑁) = ∑
𝑡𝑁

𝑟

𝑧𝑁!

∞

𝑧𝑁=0

[
𝑚!

𝑏𝑁
𝑚+1 (

𝜙

(𝑝𝑁 + 1)𝑚+1
−

𝜓

(𝑞𝑁 + 1)𝑚+1
)]  (3.12) 

3.5 Neutrosophic Characteristic function 
The Characteristic function for NOLGE distribution from Equation (3.3) , and using exponential expansion has a final form [18]: 

𝑄𝑁𝑥(𝑡𝑁) = ∑
(𝑖𝑁𝑡𝑁)𝑣𝑁

𝑣𝑁!
 

∞

𝑣𝑁=0

[
𝑚!

𝑏𝑁
𝑚+1 (

𝜙

(𝑝𝑁 + 1)𝑚+1
−

𝜓

(𝑞𝑁 + 1)𝑚+1
)]  (3.13) 

3.6 Neutrosophic Incomplete Moments 
The 𝑛𝑡ℎ neutrosophic incomplete moments for NOLGE distribution from Equation (3.3) has a form [19]: 

𝑀𝑚,𝑁(𝑦𝑁) = 𝜙 ∫ 𝑥𝑁
𝑚

𝑦𝑁

0

𝑒−(𝑝𝑁+1)𝑏𝑁𝑥𝑁𝑑𝑥𝑁 − 𝜓 ∫ 𝑥𝑁
𝑚

𝑦𝑁

0

𝑒−(𝑞𝑁+1)𝑏𝑁𝑥𝑁 𝑑𝑥𝑁  

By same way in integral of neutrosophic moments we can get a final form: 

𝑀𝑚,𝑁(𝑦𝑁) =
𝜙. Γ(𝑚 + 1, (𝑝𝑁 + 1)𝑏𝑁𝑦𝑁)

[(𝑝𝑁 + 1)𝑏𝑁]𝑚+1
−

𝜓. Γ(𝑚 + 1, (𝑞𝑁 + 1)𝑏𝑁𝑦𝑁)

[(𝑞𝑁 + 1)𝑏𝑁]𝑚+1
  (3.14) 
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4. Estimation 
4.1 Maximum likelihood estimation 

Let 𝑋 ~𝑁𝑂𝐿𝐺𝐸(𝑟𝑁 , 𝑢𝑁 , 𝑏𝑁, 𝑐𝑁) and Δ = (𝑟𝑁 , 𝑢𝑁 , 𝑏𝑁 , 𝑐𝑁)𝑇  be the parameter vector .The log-likelihood for Δ  can be written as [20], 

[21]: 

𝐿(Θ, 𝑥) = ∏ 𝑓(𝑥𝑁)

𝑛

𝑖=1

   

𝐿(Θ, 𝑥) = ∏

𝑟𝑁𝑏𝑁𝑐𝑁𝑒
−𝑏𝑁𝑥𝑁𝑖[

(1−𝑒
−𝑏𝑁𝑥𝑁𝑖)

𝑐𝑁

1−(1−𝑒
−𝑏𝑁𝑥𝑁𝑖)

𝑐𝑁
−log(1−(1−𝑒

−𝑏𝑁𝑥𝑁𝑖)
𝑐𝑁

)]

𝑢𝑁(1−𝑒
−𝑏𝑁𝑥𝑁𝑖)

1−𝑐𝑁
(1−

(1−𝑒
−𝑏𝑁𝑥𝑁𝑖)

𝑐𝑁
.𝑙𝑜𝑔(1−(1−𝑒

−𝑏𝑁𝑥𝑁𝑖)
𝑐𝑁

)

𝑢𝑁
)

(𝑟𝑁+1)
𝑛
𝑖=1    

Compute the log- likelihood to get a form: 

𝑙 = 𝑙(∆) = 𝑛𝑙𝑜𝑔𝑟𝑁 + 𝑛𝑙𝑜𝑔𝑢𝑁 + 𝑛𝑙𝑜𝑔𝑏𝑁 − 𝑛𝑙𝑜𝑔𝑐𝑁 − 𝑏𝑁 ∑ 𝑥𝑖

𝑛

𝑖=1

 

                +(𝑐𝑁 − 1) ∑ 𝑙𝑜 𝑔(1 − 𝑒−𝑏𝑁𝑥𝑁𝑖)

𝑛

𝑖=1

 

              −(𝑟𝑁 + 1) ∑ 𝑙𝑜𝑔 (1 −
(1 − 𝑒−𝑏𝑁𝑥𝑁𝑖)𝑐𝑁 . 𝑙𝑜𝑔(1 − (1 − 𝑒−𝑏𝑁𝑥𝑁𝑖)𝑐𝑁)

𝑢𝑁

)

𝑛

𝑖=1

 

              + ∑ 𝑙𝑜𝑔 [
(1 − 𝑒−𝑏𝑁𝑥𝑁𝑖)𝑐𝑁

1 − (1 − 𝑒−𝑏𝑁𝑥𝑁𝑖)𝑐𝑁
− log(1 − (1 − 𝑒−𝑏𝑁𝑥𝑁𝑖)𝑐𝑁)]

𝑛

𝑖=1

  

(4.1) 

4.2 Least square estimation 

The Least square estimation (LSE) method can be used to estimate a parameter using following formula [22]: 

Θ(𝜃𝑁) = ∑ [[1 − (1 −
(1−𝑒−𝑏𝑁𝑥𝑁)

𝑐𝑁 .𝑙𝑜𝑔(1−(1−𝑒−𝑏𝑁𝑥𝑁)
𝑐𝑁)

𝑢𝑁
)

−𝑟𝑁

] −
1

𝑛+1
]

2

𝑚
𝑖=1   (4.2) 

4.3 Weighted Least square estimation 

The Weighted Least square estimation (WLSE) method can be used to estimate a parameter using following formula [22]: 

𝑊(𝜃𝑁) = ∑
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
[[1 − (1 −

(1 − 𝑒−𝑏𝑁𝑥𝑁 )𝑐𝑁 . 𝑙𝑜𝑔(1 − (1 − 𝑒−𝑏𝑁𝑥𝑁 )𝑐𝑁)

𝑢𝑁

)

−𝑟𝑁

]

𝑚

𝑖=1

−
𝑖

𝑛 + 1
]

2

 

(4.3) 

The functions in Equations (4.1), (4.2), and (4.3) are derived with respect to the parameters and solved by setting those derivatives 

equal to zero and then solving the numerical system (often using iterative methods such as Newton-Raphson or BFGS if there is no 

analytical solution), using the R programming language. 

5. Neutrosophic Simulation 
To illustrate the accuracy of the estimation of NOLGE distribution, a Monte Carlo neutrosophic simulation is performed for three 

approaches (MLE, LSE, WLSE) discussed in fifth section. The neutrosophic simulation algorithm is: 

1. Define the statistical model NOLGE, then determine the actual parameters to be estimated, represented, when 𝑟𝑁 =
[0.5,1.5], 𝑢𝑁 = [0.3,1.3], 𝑏𝑁 = [0.2,1.2], 𝑐𝑁 = [1.1,2.1]. 

2. Use the different estimation technique. 

3. Select multiple sample sizes (n=30, 60, 90, 120) to test the effect of sample size. Then, generate N iteration (e.g., 1000 samples) 

using a random number generator based on chosen distribution. 

4. Apply the estimation technique to each sample. Parameter estimates are calculated  using all the selected estimation techniques. 

5. Compute the statistical accuracy criteria for each technique across all iterations (mean square error (MSE), its root (RMSE), and 

bias) [12], [23], and then the values are compared between techniques to determine the best performer.  

6. Rank techniques based on their performance according to three statistical criteria. Then, identify the technique with the lowest 

MSE, RMSE, and Bias values as a measure of performance advantage. 

7. Present the results and make recommendations. 

The following table shows the result of neutrosophic simulation for NOLGE 

Table 3 : Monte Carlo simulations conducted for the NOLGE 

N Est. Ess. MLE LSE WLSE 
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Par. 

3
0
 

M
ea

n
 

𝒓𝑵̂ ]0.7684220,1.3782479[ ]0.7256307,1.878254[ ]0.8107461,1.6774104[ 

𝒖𝑵̂ ]0.4255054,1.1655208[ ]0.25003486,0.9294016[ ]0.32136101,1.1585889[ 

𝒃𝑵̂ ]0.206263996,1.6004971[ ]0.216034072,1.2406271[ ]0.205126612,1.3025457[ 

𝒄𝑵̂ ]3.667120 1.12297389,[ ]2.303705 1.2003628,[ ]2.519430 1.14682594,[ 

M
S

E
 

𝒓𝑵̂ ]0.7723860 0.5611748,[ ]0.4115597,1.188257[ ]0.4354975,0.8530636[ 

𝒖𝑵̂ ]0.3754524,2.5376444[ ]0.15581210,0.6674667[ ]0.14539049,0.9619678[ 

𝒃𝑵̂ ]0.003005731,0.5913223[ ]0.005269381,0.2007503[ ]0.004068094,0.1616277[ 

𝒄𝑵̂ ]45.179781 0.17577498,[ ]2.435437 ,0.1412719[ ]8.590642 ,0.11178179[ 

R
M

S
E

 

𝒓𝑵̂ ]0.8788549 0.749116,[ ]0.6415292,1.090072[ ]0.6599224,0.9236144[ 

𝒖𝑵̂ ]0.6127417,1.5929985[ ]0.39473041,0.8169863[ ]0.38130104,0.9807996[ 

𝒃𝑵̂ ]0.054824549,0.7689748[ ]0.072590504,0.4480517[ ]0.38130104,0.4020294[ 

𝒄𝑵̂ ]6.721591 0.41925527,[ ]1.560589 0.3758616,[ ]2.930980 0.33433784,[ 

B
ia

s 

𝒓𝑵̂ ]0.268422 0.1217521,[ ]0.2256307,0.378254[ ]0.3107461 0.1774104,[ 

𝒖𝑵̂ ]0.1255054,0.1344792[ ]0.04996514,0.3705984[ ]0.02136101,0.1414111[ 

𝒃𝑵̂ ]0.006263996,0.4004971[ ]0.016034072,0.0406271[ ]0.005126612,0.1025457[ 

𝒄𝑵̂ ]1.567120 0.02297389,[ ]0.203705 0.1003628,[ ]0.419430 ,0.04682594[ 

6
0
 

M
ea

n
 

𝒓𝑵̂ ]0.6455354,1.42217682[ ]0.6423265,1.7989833[ ]0.7008391,1.6609149[ 

𝒖𝑵̂ ]0.4580180,1.1157927[ ]0.3569932,0.9855108[ ]0.39685327,0.9557224[ 

𝒃𝑵̂ ]0.198722701,1.5014615[ ]0.1997717,1.27372395[ ]0.194966094,1.3394544[ 

𝒄𝑵̂ ]3.195213 1.14432764,[ ]2.2378522 1.13445143,[ ]2.3716367 1.11220108,[ 

M
S

E
 

𝒓𝑵̂ ]0.2445797 ,0.25821676[ ]0.1168153,0.5741687[ ]0.2105605,0.4267738[ 

𝒖𝑵̂ ]0.3201380,1.5947631[ ]0.1089898,0.4422803[ ]0.12215183,0.3930340[ 

𝒃𝑵̂ ]0.00147877,0.4184299[ ]0.00251044,0.21085239[ ]0.001901072,0.1650236[ 

𝒄𝑵̂ ]20.497538 0.17885977,[ ]1.784905 0.13072780,[ ]4.5432516 0.09582104,[ 

R
M

S
E

 

𝒓𝑵̂ ]0.4945499,0.50815033[ ]0.3417826,0.7577392[ ]0.4588687,0.6532793[ 

𝒖𝑵̂ ]0.5658074,1.2628393[ ]0.330136,0.6650416[ ]0.34950226,0.6269243[ 

𝒃𝑵̂ ]0.0384548,0.6468616[ ]0.05010430,0.45918666[ ]0.0436012,0.4062309[ 

𝒄𝑵̂ ,]0.422918164.527421[ ]1.3360034 0.36156299,[ ]2.1314905 0.30954974,[ 

B
ia

s 

𝒓𝑵̂ ]0.1455354 0.07782318,[ ]0.1423265,0.2989833[ ]0.2008391 0.1609149,[ 

𝒖𝑵̂ ]0.158018,0.1842073[ ]0.0569932,0.3144892[ ]0.0968532,0.3442776[ 

𝒃𝑵̂ ]0.00127729,0.3014615[ ]0.00022828,0.07372395[ ]0.0050339,0.1394544[ 

𝒄𝑵̂ ]1.095213 0.04432764,[ ]0.1378522 0.03445143,[ ]0.2716367 0.01220108,[ 

9
0
 

M
ea

n
 

𝒓𝑵̂ ]0.6162185,1.41549816[ ]0.6536816,1.57877112[ ]0.6468753,1.6171214[ 

𝒖𝑵̂ ]0.361018,1.27882503[ ]0.3344813,1.0098268[ ]0.3840868,1.0678597[ 

𝒃𝑵̂ ]0.2054801,1.5431271[ ]0.2050540,1.3065827[ ]0.1985389,1.3019430[ 

𝒄𝑵̂ ]2.8368908 1.05448471,[ ]2.2520674 1.13540953,[ ]2.2327755 ,1.12840014[ 

M
S

E
 

𝒓𝑵̂ ]0.2369878,0.26604037[ ]0.2678811,0.28823410[ ]0.1278475,0.3886124[ 

𝒖𝑵̂ ]0.1204802,1.59561304[ ]0.0718905,0.3956973[ ]0.09984225,0.5128128[ 

𝒃𝑵̂ ]0.0012963,0.4840597[ ]0.0027755,0.1437240[ ]0.0013455,0.1486854[ 

𝒄𝑵̂ ]9.0372132 0.12591376,[ ]2.9331265 0.08801489,[ ]3.0834354 0.06714572,[ 

R
M

S
E

 

𝒓𝑵̂ ]0.4868139,0.51579101[ ]0.5175724,0.53687438[ ]0.357557,0.6233879[ 

𝒖𝑵̂ ]0.3471025,1.26317578[ ]0.26812413,0.6290448[ ]0.315978,0.7161095[ 

𝒃𝑵̂ ]0.0360052,0.6957440[ ]0.052683,0.3791095[ ]0.0366822,0.3855974[ 

𝒄𝑵̂ ]3.0061958 0.35484329,[ ]1.712637 ,0.29667304[ ]1.7559714 0.25912492,[ 

B
ia

s 

𝒓𝑵̂ ]0.1162185,0.08450184[ ]0.1536816 0.07877112,[ ]0.1468753 ,0.1171214[ 

𝒖𝑵̂ ]0.0610182 0.02117497,[ ]0.034481,0.2901732[ ]0.08408681,0.2321403[ 

𝒃𝑵̂ ]0.0054801,0.3431271[ ]0.0050540,0.1065827[ ]0.0014610,0.1019430[ 

𝒄𝑵̂ ]0.7368908 0.04551529,[ ]0.1520674 0.03540953,[ ]0.1327755 ,0.02840014[ 

1
2
0
 

M
ea

n
 

𝒓𝑵̂ ]0.6088066,1.43542573[ ]0.6170890,1.6056755[ ]0.6798458,1.52847868[ 

𝒖𝑵̂ ]0.37131488,1.36276409[ ]0.35682408,1.0426991[ ]0.39421229,1.0386712[ 

𝒃𝑵̂ ]0.203115990,1.4732599[ ]01,1.27294-2.000039e[ ]0.195334361,1.3647878[ 

𝒄𝑵̂ 2.705355] 1.101154562,[ ]2.311424 1.13603778,[ ]2.16066186 1.0859956,[ 

MS
E

 

𝒓𝑵̂ ]0.1781467,0.21948012[ ]0.120401,0.2529646[ ]0.1330275,0.17951959[ 

𝒖𝑵̂ ]0.13330633,1.89577521[ ]0.0640675,0.4142318[ ]0.082044,0.3504012[ 
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𝒃𝑵̂ ]0.0010468,0.4175756[ ]03,0.098167-2.288731e[ ]0.0011985,0.1565051[ 

𝒄𝑵̂ 6.767972] 0.157561444,[ ]1.646679 0.07026270,[ 2.3363673] 0.06288197,[ 

R
M

S
E

 

𝒓𝑵̂ ]0.4220743,0.46848706[ ]0.3469885,0.5029559[ ]0.3647293,0.42369752[ 

𝒖𝑵̂ ]0.3651114,1.37687153[ ]0.2531157,0.6436084[ ]0.286433,0.5919470[ 

𝒃𝑵̂ ]0.0323547,0.6462009[ ]02,0.313316-4.784069e[ ]0.034619,0.3956073[ 

𝒄𝑵̂ ]2.601532 ,0.396940101[ ]1.28323 0.26507113,[ ]1.528518 0.25076278,[ 

B
ia

s 

𝒓𝑵̂ ]0.1088066 0.06276409,[ ]0.117089 0.06457427,[ ]0.1798458 0.02847868,[ 

𝒖𝑵̂ ]0.0713148,0.2732599[ ]0.056824,0.2573009[ ]0.0942122,0.2613288[ 

𝒃𝑵̂ ]0.003115 ,0.001154562[ ]06,0.072945-3.937511e[ ]0.0046656,0.1647878[ 

𝒄𝑵̂ ]0.6053554 0.1056755,[ ]0.211424 0.03603778,[ ]0.06066186 0.0140044,[ 

The results shown in table 3 show a clear contrast in the performance of three methods. In general, WLSE trends to outperform 
in many scenarios, especially as the sample size increases, with lower MSE, RMSE, and Bias values compared to MLE and LSE. For 

example, at a sample size of 120, WLSE estimates of the parameter 𝑟𝑁  were more accurate, with an MSE of [0.1330275, 0.17951959] 

compared to [0.1781467, 0.21948012] for MLE and [0.120401, 0.2529646] for LSE. This suggests that WLSE better balances precision 

and reliability, especially in neutrosophic environments where uncertainty is a fundamental part of data. Additionally, its noted that 

increasing the sample size generally leads to improved accuracy for all methods, underscoring the importance of sufficient sample size in 

statistical analysis. For example, the MSE for 𝑐𝑁 decreased from [0.17577498, 45.179781] at a sample size of 30 to [0.157561444, 

6.767972] at a sample size of 120 for MLE, showing a significant improvement with increasing data. In terms of bias, WLSE demonstrated 

balanced performance, with bias values being relatively small across most parameters. Conversely, MLE exhibited higher bias in some 

cases, such as the estimation of 𝑢𝑁 at a sample 30, where bias was [0.1255054, 0.1344792] compared to [0.02136101, 0.1414111] for 
WLSE. 

Based on these results, it can be concluded that WLSE is the most reliable method for estimating NOLGE distribution parameters 

in neutrosophic context, especially when dealing with large samples. However, the choice of the optimal method may also depend on the 

nature of data and the available computational resources, therefore, WLSE is recommended when sufficient data are available, taking into 

account the practical feasibility of each method. 

6. Applications 
In this section, we illustrate the effectiveness of NOLGE distribution in fitting data using a real-world scenario. The data set used is 

lifetime in 100 hours of 23 batteries is given as [24]: 

[2.9,3.99], [5.24,7.2],[6.56,9.02], [7.14,9.82], [11.6,15.96], [12.14,16.69], [12.65,17.4], [13.24,18.21],[13.67,18.79], [13.88,19.09], 

[15.64,21.51], [17.05,23.45], [17.4,23.93], [17.8,24.48], [19.01,26.14], [19.34,26.59], [23.13,31.81], [23.34,32.09],[26.07,35.84], 

[30.29,41.65], [43.97,60.46], [48.09,66.13], [73.48,98.04]. 

To illustrate advantages of NOLGE distribution and its data-fitting capabilities. Eight measurement employed in this comparison are: 

Cramer-von Mises statistic, the Anderson-Darling statistic, and the Kolmogorov-Smirnov statistic (KS), statistic (W), the p-value that 

corresponds to the KS-test [25], [26], and the information criterion HQIC, BIC, AIC, and CAIC [27], [28]. These are typical goodness of 

fit measures. Contrasting the outcomes of suggested distribution with these of six other distributions, which are: 

• Neutrosophic Beta exponential generalized exponential distribution  (NBeGE). 

• Neutrosophic Kumaraswamy Exponential Generalized exponential distribution (NKuGE). 

• Neutrosophic Exponential generalized exponential distribution (NEGGE). 

• Neutrosophic Log-gamma exponential generalized exponential distribution  (NLGamGE). 

• Neutrosophic Trunked exponential exponential generalized exponential distribution  (NTEEGE). 

• Neutrosophic Generalized  exponential distribution (NGE). 

Table 4 shows the results of the criteria for the neutrosophic distributions, table 5 shows the value of the statistical measures, and 

table 6 shows the estimator value interval for parameters by MLE 
 

Table 4. results of the criteria for the distributions 

Dist. -L AIC CAIC BIC HQIC 

NOLGE [88.43435,95.60102] ]184.8687,199.202[ ]187.0909,201.4243[ ]189.4107,203.744[ ]186.011,200.3443[ 

NBeGE [93.16967,95.94182] ]194.3393,199.9018[ ]196.5616,202.124[ ]198.8813,204.4438[ ]195.4816,201.0441[ 

NKuGE [93.94476,96.32557] ]195.8895,200.6671[ ]198.1117,202.8893[ ]200.4315,205.2091[ ]197.0318,201.8094[ 

NEGGE [88.86065,96.01458] ]185.7234,200.0295[ ]187.9456,202.2517[ ]190.2654,204.5714[ ]186.8657,201.1718[ 

NLGamGE [88.96139,97.23907] ]185.9233,202.5317[ ]188.1455,204.7539[ ]190.4653,207.0737[ ]187.0656,203.674[ 

NTEEGE [88.96954,96.19195] ]186.5684,200.3989[ ]188.7906,202.6211[ ]191.1104,204.9409[ ]187.7107,201.5412[ 

NGE [92.09421,99.87432] ]188.2608,203.7663[ ]188.8608,204.3663[ ]190.5318,206.0373[ ]188.832,204.3375[ 

 Table 4 compares the NOLGE distribution with sex other neutrosophic distributions using information criteria and negative 

logarithmic function (-L). the results shows NOLGE distribution performed exceptionally well, recording the lowest information criteria 

values in most cases compared to the other distributions. this suggests that NOLGE distribution is more efficient at modeling data while 
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reducing model complexity. These results reinforce NOLGE's superiority in providing a better balance between accuracy and simplicity, 

making it a strong candidate for data analysis under uncertainty. 

Table 5 . value of the statistical measures 

Dist. W A K-S p-value 

NOLGE ]0.04494521,0.04979327[ ]0.2624134,0.28484[ [0.1176604,0.1253289] [0.8197149, 0.8713342] 

NBeGE ]0.06792112,0.08741665[ ]0.3771706,0.4937468[ [0.1435358, 0.268247] [0.05956844,0.6781621] 

NKuGE ]0.07413739,0.09087818[ ]0.4153534,0.5157557[ [0.1522436, 0.2950746] [0.02861457,0.607189] 

NEGGE ]0.07159541,0.07320745[ ]0.4007221,0.4092349[ [0.1282813, 0.1295094] [0.7890527,0.7982154] 

NLGamGE ]7.227405 7.227293,[ 45.85284 45.82877,[ [0.9841392, 0.9946239] 4.440892e-16 

NTEEGE ]0.06795516,0.0700356[ ]0.3893318 0.3778144,[ [0.1588924, 0.1611754] [0.5358761,0.553846] 

NGE ]0.08148869,0.08332876[ ]0.4577023,0.4677389[ [0.2444697,0.261] [0.07171139, 0.1073506] 

 Table 5 evaluate the performance of the distributions using some statistical measures. NOLGE distribution performed better on 

the K-S statistics than other distributions such us NKuGE demonstrating a better convergence between the data and the model. The p-
value for NOLGE was high, confirming that there was no evidence to reject the goodness-of-fit hypothesis, unlike distributions such as 

NKuGE, which recorded low p-values. These results confirm the NOLGE provides a more reliable statistical fit to the real data than other 

distributions. 

Table 6. Estimator value interval for parameters by MLE 

Dist. 𝒓𝑵̂ 𝒖𝑵̂ 𝒃𝑵̂ 𝒄𝑵̂ 

NOLGE ],5.356178560.06044682[ ],5.533815221.56437111[ ],0.063429530.01762876[ ],1.512030341.26461437[ 

NBeGE ],1.65177591.16508722[ ],0.46989840.09953987[ ]0.474603130.1095705,[ ],1.69786040.55594414[ 

NKuGE ],1.400136841.0817318[ ],0.897672810.1038297[ ]0.4670658,0.05793171[ ],1.460523380.4686354[ 

NEGGE ]0.89543650.8377522,[ ]1.7174486 1.5989327,[ ]0.0986491,0.0673655[ ],1.64421891.5520771[ 

NLGamGE ]1.67998031.47187623,[ ],0.908850390.7201890[ ]0.13304940.05764093,[ ]1.5765075 ,1.02119949[ 

NTEEGE ]0.88654756,0.88082429[ ],1.593096641.54093053[ ]0.05870377,0.04644511[ ],1.437158121.35292695[ 

NGE ---  --- ]0.05010710.03528371,[ ]1.06370760.98810296,[ 

 Table 6 shows the parameter estimation intervals for studied distributions. for NOLGE, parameter estimates were within 

reasonable ranges. Compared to the other distributions, NOLGE estimates showed better consistency, with no extreme or unstable values, 

as in case of NBeGE or NKuGE. This reflects NOLGE's ability to accurately estimate parameters even in the presence of neutrosophic 
uncertainty. 

 In addition to the three previous tables, a visual test is conducted by drawing the fitting NPDFs of NOLGE with histogram data 

set, in addition to drawing the empirical fitted NCDFs with data set used for the proposed distribution and other comparative distributions, 

as shown in figures 6 and 7 as follows. 

 

Figure 6: Fitting NPDFs of NOLGE with histogram data set 
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Fitted NGE 
Figure 7: Empirical Fitted CDFs with data set used 

Figure 6 shows the fit of NOLGE's NPDF to the data histogram. It can be seen that the NOLGE curve closely follows the data 

distribution, confirming its ability to accurately represent the data. Figure 7 compares the NCDFs with theoretical NCDFs of various 

distributions, such as NBeGE or NKuGE, which exhibit significant deviations. 

 These visual results support the quantitative conclusions from the tables, confirming NOLGE's superiority in modeling data.  

Conclusion 
 The proposed distribution demonstrated outstanding performance when compared to six other neutrosophic distributions (e.g., 

NBeGE, NKuGE, and NEGGE). It recorded the lowest information criterion values, indicating its high efficiency in achieving a balance 

between accuracy and model simplicity. This makes it an ideal choice for analyzing complex data involving a high degree of uncertainty. 

Through neutrosophic Monte Carlo simulations, the weighted least squares (WLSE) method outperformed other estimation methods (MLE 

and LSE) in most scenarios, especially as the sample size increased, reflecting its high accuracy in parameter estimation under uncertain 

conditions. The study provides an integrated theoretical and practical framework for integrating neutrosophic logic with probability 

distributions, opening new horizons for data analysis under uncertain conditions. This represents an important advance in fields such as 

engineering, medical sciences, and economics, where data are often incomplete or inconsistent. While NOLGE distribution offers a 
powerful framework for analyzing data under uncertainty, it may have limitations, such as the small size of the data studied or the limited 

study of battery life, which may not fully represent the behavior of data in other fields such as medicine or economics. These limitations 

highlight the need for further research to deepen its understanding and improve its applications. Overcoming these limitations could make 

it a more powerful tool in fields such as artificial intelligence and decision science. 
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