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three techniques (MLE, LSE, WLSE), and compare the model's performance
with other model using information criteria and statistical measures. The model
license. is applied to a real neutrosophic data set characterized by uncertainty (the life
in 100 hours of 23 batteries), demonstrating its efficiency in analyzing

ambiguous data when compared to other neutrosophic distributions.

1. Introduction
In recent years, modeling data with ambiguous of uncertain nature has become a major challenge in many fields such as engineering,
medical sciences, and economics. Despite significant progress in the development of probability distributions, most current models rely
on traditional data assumptions that assume certainty and clarity, limiting their effectiveness in dealing with neutrosophic data
characterized by uncertainty and contradiction. Therefore, a number of neutrosophic distributions have recently emerged that address this
type of data. Examples include: neutrosophic HWIR [1], Neutrosophic Lindley [2], neutrosophic Generalized pareto [3], neutrosophic
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exponentiated inverse Rayleigh [4], neutrosophic inverse Gompertz [5], neutrosophic Beta-Lindley [6], neutrosophic Burr XII [7],
Neutrosophic inverse power Lindley [§], Neutrosophic Topp-Leone [9], and neutrosophic Topp-Leone [8].

Despite the introduction of these neutrosophic distributions, adding additional parameters to the underlying distribution and integrate
it with NL is almost nonexistent. Therefore, the underlying distribution is combined with Odd Lomax family, there the Odd Lomax
Generalized Exponential has CDF and PDF functions, respectively, in the form [9]:

F(x) =1-— (1 _ 1- e—bx)C_lngll -(1- e—bx)C))— N
B byt |_(L—e7P)¢ )
rbee™ (1 — e ™) |7 =g —ohrye — log(1 — (1 —e7)°)
re= O | (12)

wf1-Gme?)nlogll- G- e—bx)c))(”“
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The research gap lies in the lack of probability distributions capable of integrating NL, which addresses ambiguity and uncertainty
using concepts such as neutrosophic sets. Therefore, this study aims to develop a theoretical and applied framework for OLGE in
neutrosophic context, allowing for more flexible analysis of complex data.

The study aims to develop a neutrosophic version of OLGE distribution by defining the density functions and
probability distribution, deriving the mathematical properties of the model, such as quantile function and incomplete
Moments, introducing new estimation methods based on neutrosophic simulations, and the comparing the performance of
the proposed model with other models using statistical criteria. The model was applied to real data related to the lifetime
of 23 batteries over 100 hours, demonstrating its superiority in handling ambiguous data compared to traditional
distributions. This study contributes to bridging the gap between probability theory and NL, opening new horizons for
applications in multiple fields.

2. Neutrosophic Odd Lomax Generalized Exponential

Assume Xy = d + tI, tI € [X,, Xy], where X, X; are lower and upper values of the neutrosophic Odd Lomax Generalized Exponential
distribution (NOLGE) random variable having determined part d and indeterminate part tI, tI € [I;,I;]. Note that the NOLGE reduces
to classical Chen when X; = X;. The neutrosophic cumulative density (NCDF), and neutrosophic probability density (NPDF) of NOLGE
has a Neutrosophic shape parameters 1y € [ry, 1y ], uy € [u,, uylby € [by, byl, and cy € [c,, cy], has the form [9]:
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The neutrosophic survival function (Sy) has a form [1]:
— e~ bNxN)CN _ (1 — p—bNxNYeN)\ TN
Sy(ey) = (1 _ - 'loglfl - e ™) )) 2.3)
N
While the neutrosophic hazard function (hy) has a form [11]:
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Figure 1 shows the NCDF function with varying parameter intervals, while Figure 2 shows the NPDF function with varying parameter
values. Figure 3 provides a three-dimensional representation of NCDF, while Figure 4 shows a three-dimensional representation of the
NPDF. Figure 5 illustrates the neutrosophic survival function curve with varying parameter intervals.
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Figure.5 plot the survival function for NOLGE

Figure 1 shows the curves illustrating how the shape of function changes at the parameters take values within uncertain
intervals. The variance in the curves reflects the flexibility of distribution in representing uncertain data, as the distribution
can adapt to uncertainties and ambiguities in data.

Figure 2 shows that shape of function changes based on parameters values, demonstrating distribution's ability to model
data with divers shapes (such as skewed or multi-peaked data). This flexibility makes the distribution suitable for analyzing
complex data characterized by uncertainty.

Figure 3 shows the relationship between random variable and uncertain parameters in three dimensions. The three
dimensions representation helps understand how the parameters interact with each other and how they affect the shape of the
cumulative function.

Figure 4 shows the NCDF in three dimensions, showing how the density changes as the parameters change. This
representation is useful for understanding the behavior of distribution when modeling uncertain data, especially in case where
the data is uncertain or inconsistent.

Figure 5 depicts the survival function, which is important in analyzing temporal data, such as battery life data mentioned
in the study, as it helps estimate the probability of a system surviving for specific period of time.

These figures enhance understanding of the mathematical properties and practical applications of NOLGE distribution,

demonstrating its superiority over conventional distributions in analyzing uncertain data.

3. Properties for NOLGE distribution
3.1 Expansion Basic functions for NOLGE
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The NCDF expansion for NOLGE distribution using binomial series, logarithm expansion and exponential expansion series has a
form [11], [12]:

F(xy) = 1 — Be ?NbN*N 3.1)
[(ry+knuy(—1)INTINTINTZN G, .\ (UNC
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The NPDF expansion for NOLGE distribution by same way in NCDF expansion has a form:
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3.2 Neutrosophic Moments function for NOLGE

Let Xy be any neutrosophic random variable with NPDF in equation 8. The neutrosophic m** moment for NOLGE is calculated by
form [13]:

SN ny

(oo}

tow = E(xy) = f X f Gy
0

oo o
U = 4)] Xt e~ PNHDDNXN gy — lpj xT e~ @N+DONEN gy
0 0

Then the final form for p,,, y given as:
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The neutrosophic variance, neutrosophic skewness, and neutrosophic kurtoses respectively has a forms [14], [15]:
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The table below provides a comprehensive statistical analysis of NOLGE based on various parameters. The table contains the
statistical moments ((y y, 12§, M3y, Ha ), Variance (vary), skewness coefficient (SKy), and kurtosis coefficient (KUy), with all values
represented as neutrosophic intervals [lower, upper] that reflect the degree of uncertainty in the results.

Table.1 statistical moments, variance, skewness, and kurtosis for selected parameter intervals of NOLGE

y Uy by N H1n Hin Hin Hin vary SKy KUy
[0.1,1.1] [0.058564, [0.029881, [0.020049, [0.015084, [0.026451, [1.639623, [2.883882,
o 0.299825] 0.193303] 0.139349] 0.10776] 0.103408] 3.881547] 16.89464]
(0212 0097579, [0.050177, [0033553,  [0025167, [0.040655,  [1.643135  [2.882804,
T 0.299348] 0.1971] 0.143782] 0.111996] 0.107491] 2.985262] 9.995964]
[0.3,1.3] [0.12956, [0.067646, [0.045186, [0.033813, [0.05086, [1.586291, [2.691684,
[0.6,1.6] o 0.318846] 0.207837] 0.150303] 0.116271] 0.106175] 2.568261] 7.389141]

[0.4,1.4]  [0.152708,  [0.083128,  [0.056171,  [0.042213,  [0.059809,  [1.589088,  [2.690553,

[0.4,1.4]

[e1€0]
[s'1°s°0]
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0.318653]  0.211455]  0.154517]  0.120304]  0.109916]  2.343623]  6.108697]
(0515 (0200816, [0.106988  [0.07097,  [0.052633,  [0.066661,  [1491155.  [237923,

05.18] » 0.357159]  0.23159]  0.166189]  0.127607]  0.104027]  2.028032]  4.599972]

= ’ (0616 0221018 [0.123009. [0082893,  [0.061916,  [0.074159.  [1490643, 2369009,
b 0L 0.358536]  0.236296]  0.171222]  0.132276]  0.107748]  1.92139]  4.092004]
= 0717 0237972 [0.135233 (0091671,  [0.068581,  [0.078602,  [1471057,  [230652,
= eone — 0.367066]  0.241892]  0.17501]  0.134959]  0.107155]  1.843362]  3.750054]
T osng (0249138 0147009 [0.101336,  [0.07645,  [0.084930.  [1.472173,  [2302782,

S 0.367714]  0.245793]  0.179396]  0.13912]  0.110579]  1.79784]  3.537481]

Table 1 shows that the distribution is positive and right-skewed in all cases. Some parameters, particularly the kurtosis coefficient,

have high uncertainty, which may indicate that the distribution is suitable for modeling data with extreme values. Increasing some
parameters (such as by and cy) reduces the variance and skewness, making the distribution more stable. The distribution is also suitable
for data with heavy tails (such as financial risk analysis and rare medical data). In short, this table provides a powerful tool for analyzing
probability distributions under uncertainty, making it useful in real-world applications where data are uncertain or ambiguous.

3.3 Neutrosophic Quantile function for NOLGE

The Neutrosophic Quantile function represents in the inverse of NCDF function and it expressed by the relationship [16]:

qy = F(xy)

For each gy € (0,1) and F (xy) is NCDF for NOLGE distribution.
Then a final form for it can be expressed as:

-1
by

Xy =

logq1—

1

0 ]a

0+ W_,(0e79)

®=uN

Uy

1- CIN)é

(3.11)

The following table presents the quantile values of the NOLGE neutrosophic distribution for a range of different parameters.

Table.2 The Neutrosophic Quantile for selected parameter intervals of NOLGE distribution

v, Uy, by, Cy

N [0.3,1.3],[0.5,1.5],[0.7,1.  [0.6,1.6],[0.4,1.4],[0.8, [0.6,1.6],[0.3,1.3],[0.5, [0.7,1.7],[0.5,1.5], [0.8,1.8],[0.9,1.9],[0.7,1.
71,[0.9,1.9] 1.8],[0.5,1.5] 1.5],[0.7,1.7] [0.9,1.91,[0.2,1.2] 71,10.4,1.4]

0.1  [0.3402208, 0.4258823] [0.1940932, 0.35240]  [0.4947905,0.7349827]  [0.00708521, 0.2578218]  [0.0662213, 0.3178744]
0.2 [0.5695547,0.5704234] [0.45907, 0.4977096]  [0.6848535,1.5192220]  [0.0459328, 0.3824720] [0.17026888, 0.450276]
0.3 [0.6991737,0.8317391]  [0.6349814,0.8618342] [0.8642528,2.7368166]  [0.1553307, 0.5028108] [0.316630,0.57234]
0.4 [0.8344206,1.1717438]  [0.7839862,1.5409015] [1.0598887,5.0266177]  [0.4153965, 0.6347834] [0.525888,0.7007074]
0.5 [0.9897702,1.6710243]  [0.9620333,2.8525751] [1.2959503,3.2297234] [0.7932117.01385864] [0.839717, 0.8480456]
0.6 [1.1858321,2.5253364] [1.1969081,5.8297463] [1.6119157,3.5344538]  [0.793211,2.443785774]  [1.0323835,1.34996091]
0.7 [1.4650502,4.3768239]  [1.5492546,3.5982321] [2.0963920,4.4850896] [1.0020368,6.084397682] [1.2896904,2.29675352]
0.8 [1.9468935,10.1428781] [2.1963977,4.3031565] [3.0124143,4.8598500] [1.3132275,1.878408378] [1.7167602,4.50057007]
0.9 [3.1848604,42.2787895] [3.9448324,4.4141649] [5.5590296,7.8599556] [1.8762819,3.800471633] [2.30976829, 2.7295857

3.4 Neutrosophic Moment Generating Function

From above table, we notice that the values generally increase as qy increases from 0.1 to 0.9, as the ranges (the difference
between the upper and lower limits) widen with increasing q,. Some columns also show very high extreme values at gy = 0.9. third
column shows the highest values in general, while the fourth column shows the largest ranges and changes in the values. The fifth column
shows an average behavior among the columns.

The NMGF for NOLGE distribution from Equation (3.3), and using exponential expansion has a final form [17]:

My, (ty) = i

N=0

3.5 Neutrosophic Characteristic function
The Characteristic function for NOLGE distribution from Equation (3.3) , and using exponential expansion has a final form [18]:

¢

m! [0) P
ﬁ [bNmH <(PN + 1)m+1 B (qn + 1)m+1>]

w)]

O Gty [ m!
Qu.(ty) = Z ! [blrvrwl ((PN + 1)m+1 - (qy + D™

vny=0

3.6 Neutrosophic Incomplete Moments
The nt" neutrosophic incomplete moments for NOLGE distribution from Equation (3.3) has a form [19]:

YN YN
Myn(yn) = ¢f xjjt e~ PNHUPNIN Gy — ¢f X e~ (avrDbNIN gy
0 0

By same way in integral of neutrosophic moments we can get a final form:
¢.T(m+1, (py + Dbyyy)  $.T'(m+1,(qy + Dbyyn)

Mm,N(YN) =

[(py + Dby]™*?

[(gny + Dby]™*?

(3.12)

(3.13)

(3.14)
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4. Estimation
4.1 Maximum likelihood estimation

Let X ~NOLGE (ry, uy, by, cy) and A = (ry,uy, by, cy)T be the parameter vector .The log-likelihood for A can be written as [20],
[21]:

L@ = | [ e

__—bnxpn; ‘N
%—log(l_(l_e—bNxNi)cN)
1_(1_e—bN)CNi) N

+1
1-cy (1_e_bNxNi)CN.log<1_(1_e—bNxNi)CN) (rn+1)
uN(l—e_bNxNi) 1 o

Compute the log- likelihood to get a form:

TNbNCNe_bNXNi

L(O,x) =]I%,

n
[ = 1(A) = nlogry + nloguy + nlogby —nlogcy — bNZ X;

i=1

n
+(cy —1) Z lo g(1 — e~bn*ni)
i=1

n (1 _ e_bNxNi)CN_ lOg(l _ (1 _ e_bNxNi)CN) (4.1)
—(rN+1)Zlog (1— )
i=1 Un
n
(1- e_bNxNi)CN ~ '
+ Z log [1 - (1 - e_bNxNi)CN - lOg(l - (1 —€ bNXNl)CN)
i=1
4.2 Least square estimation
The Least square estimation (LSE) method can be used to estimate a parameter using following formula [22]:
2
(1—e_bNxN)CN_log(1—(1—e_bNxN)CN) TN 1
— m —_ —_ —_—
00y) =21, [1 (1 o — 4.2)

4.3 Weighted Least square estimation
The Weighted Least square estimation (WLSE) method can be used to estimate a parameter using following formula [22]:
O« (n+ 1)2(n+ 2) (1 — e bvan)eN Jog(1 — (1 — e~bvan)en)\ ™™
WOy =) ———————|[1-|1-
- in—i+1) Uy
2 4.3)

i
n+1

The functions in Equations (4.1), (4.2), and (4.3) are derived with respect to the parameters and solved by setting those derivatives
equal to zero and then solving the numerical system (often using iterative methods such as Newton-Raphson or BFGS if there is no
analytical solution), using the R programming language.

5. Neutrosophic Simulation
To illustrate the accuracy of the estimation of NOLGE distribution, a Monte Carlo neutrosophic simulation is performed for three
approaches (MLE, LSE, WLSE) discussed in fifth section. The neutrosophic simulation algorithm is:

1. Define the statistical model NOLGE, then determine the actual parameters to be estimated, represented, when 1y =
[0.5,1.5],uy =[0.3,1.3], by = [0.2,1.2],cy = [1.1,2.1].

2. Use the different estimation technique.

3. Select multiple sample sizes (n=30, 60, 90, 120) to test the effect of sample size. Then, generate N iteration (e.g., 1000 samples)
using a random number generator based on chosen distribution.

4. Apply the estimation technique to each sample. Parameter estimates are calculated using all the selected estimation techniques.

5. Compute the statistical accuracy criteria for each technique across all iterations (mean square error (MSE), its root (RMSE), and
bias) [12], [23], and then the values are compared between techniques to determine the best performer.

6. Rank techniques based on their performance according to three statistical criteria. Then, identify the technique with the lowest
MSE, RMSE, and Bias values as a measure of performance advantage.

7. Present the results and make recommendations.

The following table shows the result of neutrosophic simulation for NOLGE

Table 3 : Monte Carlo simulations conducted for the NOLGE
[ N [ Est. | Ess. | MLE | LSE | WLSE




Par
N [0.7684220,1.3782479] [0.7256307,1.878254] [0.8107461,1.6774104]
§ ity [0.4255054,1.1655208] [0.25003486,0.9294016] [0.32136101,1.1585889]
E by [0.206263996,1.6004971] [0.216034072,1.2406271] [0.205126612,1.3025457]
Cy [1.12297389, 3.667120] [1.2003628, 2.303705] [1.14682594, 2.519430]
N [0.5611748, 0.7723860] [0.4115597,1.188257] [0.4354975,0.8530636]
=2 ity [0.3754524,2.5376444] [0.15581210,0.6674667] [0.14539049,0.9619678]
% Ez\v [0.003005731,0.5913223] [0.005269381,0.2007503] [0.004068094,0.1616277]
w Cy [0.17577498, 45.179781] [0.1412719, 2.435437] [0.11178179, 8.590642]
< N [0.749116, 0.8788549] [0.6415292,1.090072] [0.6599224,0.9236144]
§ iy [0.6127417,1.5929985] [0.39473041,0.8169863] [0.38130104,0.9807996]
% Ez\v [0.054824549,0.7689748] [0.072590504,0.4480517] [0.38130104,0.4020294]
Ty [0.41925527, 6.721591] [0.3758616, 1.560589] [0.33433784, 2.930980]
N [0.1217521, 0.268422] [0.2256307,0.378254] [0.1774104, 0.3107461]
= iy [0.1255054,0.1344792] [0.04996514,0.3705984] [0.02136101,0.1414111]
2 Ez\v [0.006263996,0.4004971] [0.016034072,0.0406271] [0.005126612,0.1025457]
Ty [0.02297389, 1.567120] [0.1003628, 0.203705] [0.04682594, 0.419430]
N [0.6455354,1.42217682] [0.6423265,1.7989833] [0.7008391,1.6609149]
§ iy [0.4580180,1.1157927] [0.3569932,0.9855108] [0.39685327,0.9557224]
= by [0.198722701,1.5014615] [0.1997717,1.27372395] [0.194966094,1.3394544]
Cy [1.14432764, 3.195213] [1.13445143,2.2378522] [1.11220108, 2.3716367]
N [0.25821676, 0.2445797] [0.1168153,0.5741687] [0.2105605,0.4267738]
= iy [0.3201380,1.5947631] [0.1089898,0.4422803] [0.12215183,0.3930340]
g I;z\v [0.00147877,0.4184299] [0.00251044,0.21085239] [0.001901072,0.1650236]
o Ty [0.17885977, 20.497538] [0.13072780, 1.784905] [0.09582104, 4.5432516]
< N [0.4945499,0.50815033] [0.3417826,0.7577392] [0.4588687,0.6532793]
§ iy [0.5658074,1.2628393] [0.330136,0.6650416] [0.34950226,0.6269243]
g I;,\V [0.0384548,0.6468616] [0.05010430,0.45918666] [0.0436012,0.4062309]
Cy [0.422918164.527421,] [0.36156299, 1.3360034] [0.30954974, 2.1314905]
N [0.07782318, 0.1455354] [0.1423265,0.2989833] [0.1609149, 0.2008391]
= iy [0.158018,0.1842073] [0.0569932,0.3144892] [0.0968532,0.3442776]
2 I;,\V [0.00127729,0.3014615] [0.00022828,0.07372395] [0.0050339,0.1394544]
Cy [0.04432764, 1.095213] [0.03445143,0.1378522] [0.01220108, 0.2716367]
N [0.6162185,1.41549816] [0.6536816,1.57877112] [0.6468753,1.6171214]
§ iy [0.361018,1.27882503] [0.3344813,1.0098268] [0.3840868,1.0678597]
g i’Tv [0.2054801,1.5431271] [0.2050540,1.3065827] [0.1985389,1.3019430]
Cy [1.05448471, 2.8368908] [1.13540953, 2.2520674] [1.12840014, 2.2327755]
N [0.2369878,0.26604037] [0.2678811,0.28823410] [0.1278475,0.3886124]
=2 iy [0.1204802,1.59561304] [0.0718905,0.3956973] [0.09984225,0.5128128]
% i’Tv [0.0012963,0.4840597] [0.0027755,0.1437240] [0.0013455,0.1486854]
© Cy [0.12591376, 9.0372132] [0.08801489, 2.9331265] [0.06714572, 3.0834354]
< v [0.4868139,0.51579101] [0.5175724,0.53687438] [0.357557,0.6233879]
E iy [0.3471025,1.26317578] [0.26812413,0.6290448] [0.315978,0.7161095]
% Efv [0.0360052,0.6957440] [0.052683,0.3791095] [0.0366822,0.3855974]
Cy [0.35484329, 3.0061958] [0.29667304, 1.712637] [0.25912492, 1.7559714]
N [0.1162185,0.08450184] [0.07877112, 0.1536816] [0.1171214, 0.1468753]
= iy [0.02117497, 0.0610182] [0.034481,0.2901732] [0.08408681,0.2321403]
2 E,\v [0.0054801,0.3431271] [0.0050540,0.1065827] [0.0014610,0.1019430]
Cy [0.04551529, 0.7368908] [0.03540953, 0.1520674] [0.02840014, 0.1327755]
N [0.6088066,1.43542573] [0.6170890,1.6056755] [0.6798458,1.52847868]
§ iy [0.37131488,1.36276409] [0.35682408,1.0426991] [0.39421229,1.0386712]
= g E,\v [0.203115990,1.4732599] [2.000039¢-01,1.27294] [0.195334361,1.3647878]
i Cn [1.101154562, 2.705355] [1.13603778, 2.311424] [1.0859956, 2.16066186]
w N [0.1781467,0.21948012] [0.120401,0.2529646] [0.1330275,0.17951959]
= = iy [0.13330633,1.89577521] [0.0640675,0.4142318] [0.082044,0.3504012]
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by [0.0010468,0.4175756] [2.288731¢-03,0.098167] [0.0011985,0.1565051]
N [0.157561444, 6.767972] [0.07026270, 1.646679] [0.06288197, 2.3363673]
v [0.4220743,0.46848706] [0.3469885,0.5029559] [0.3647293,0.42369752]
§ iy [0.3651114,1.37687153] [0.2531157,0.6436084] [0.286433,0.5919470]
<2 | by [0.0323547,0.6462009] [4.784069¢-02,0.313316] [0.034619,0.3956073]
N [0.396940101, 2.601532] [0.26507113, 1.28323] [0.25076278, 1.528518]
v [0.06276409, 0.1088066] [0.06457427, 0.117089] [0.02847868, 0.1798458]
@ | [0.0713148,0.2732599] [0.056824,0.2573009] [0.0942122,0.2613288]
2 by [0.001154562, 0.003115] [3.937511e-06,0.072945] [0.0046656,0.1647878]
N [0.1056755, 0.6053554] [0.03603778, 0.211424] [0.0140044, 0.06066186]
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The results shown in table 3 show a clear contrast in the performance of three methods. In general, WLSE trends to outperform
in many scenarios, especially as the sample size increases, with lower MSE, RMSE, and Bias values compared to MLE and LSE. For
example, at a sample size of 120, WLSE estimates of the parameter r,, were more accurate, with an MSE of [0.1330275, 0.17951959]
compared to [0.1781467, 0.21948012] for MLE and [0.120401, 0.2529646] for LSE. This suggests that WLSE better balances precision
and reliability, especially in neutrosophic environments where uncertainty is a fundamental part of data. Additionally, its noted that
increasing the sample size generally leads to improved accuracy for all methods, underscoring the importance of sufficient sample size in
statistical analysis. For example, the MSE for ¢, decreased from [0.17577498, 45.179781] at a sample size of 30 to [0.157561444,
6.767972] at a sample size of 120 for MLE, showing a significant improvement with increasing data. In terms of bias, WLSE demonstrated
balanced performance, with bias values being relatively small across most parameters. Conversely, MLE exhibited higher bias in some
cases, such as the estimation of uy at a sample 30, where bias was [0.1255054, 0.1344792] compared to [0.02136101, 0.1414111] for
WLSE.

Based on these results, it can be concluded that WLSE is the most reliable method for estimating NOLGE distribution parameters
in neutrosophic context, especially when dealing with large samples. However, the choice of the optimal method may also depend on the
nature of data and the available computational resources, therefore, WLSE is recommended when sufficient data are available, taking into
account the practical feasibility of each method.

6. Applications

In this section, we illustrate the effectiveness of NOLGE distribution in fitting data using a real-world scenario. The data set used is
lifetime in 100 hours of 23 batteries is given as [24]:

[2.9,3.99], [5.24,7.2],[6.56,9.02], [7.14,9.82], [11.6,15.96], [12.14,16.69], [12.65,17.4], [13.24,18.21],[13.67,18.79], [13.88,19.09],
[15.64,21.51], [17.05,23.45], [17.4,23.93], [17.8,24.48], [19.01,26.14], [19.34,26.59], [23.13,31.81], [23.34,32.09],[26.07,35.84],
[30.29,41.65], [43.97,60.46], [48.09,66.13], [73.48,98.04].

To illustrate advantages of NOLGE distribution and its data-fitting capabilities. Eight measurement employed in this comparison are:
Cramer-von Mises statistic, the Anderson-Darling statistic, and the Kolmogorov-Smirnov statistic (KS), statistic (W), the p-value that
corresponds to the KS-test [25], [26], and the information criterion HQIC, BIC, AIC, and CAIC [27], [28]. These are typical goodness of
fit measures. Contrasting the outcomes of suggested distribution with these of six other distributions, which are:

e Neutrosophic Beta exponential generalized exponential distribution (NBeGE).

Neutrosophic Kumaraswamy Exponential Generalized exponential distribution (NKuGE).
Neutrosophic Exponential generalized exponential distribution (NEGGE).

Neutrosophic Log-gamma exponential generalized exponential distribution (NLGamGE).
Neutrosophic Trunked exponential exponential generalized exponential distribution (NTEEGE).
Neutrosophic Generalized exponential distribution (NGE).

Table 4 shows the results of the criteria for the neutrosophic distributions, table 5 shows the value of the statistical measures, and
table 6 shows the estimator value interval for parameters by MLE

Table 4. results of the criteria for the distributions

Dist. -L AIC CAIC BIC HQIC

NOLGE [88.43435,95.60102] [184.8687,199.202] [187.0909,201.4243] [189.4107,203.744] [186.011,200.3443]
NBeGE [93.16967,95.94182] [194.3393,199.9018] [196.5616,202.124] [198.8813,204.4438] | [195.4816,201.0441]
NKuGE [93.94476,96.32557] [195.8895,200.6671] | [198.1117,202.8893] | [200.4315,205.2091] | [197.0318,201.8094]
NEGGE [88.86065,96.01458] [185.7234,200.0295] | [187.9456,202.2517] | [190.2654,204.5714] | [186.8657,201.1718]
NLGamGE | [88.96139,97.23907] [185.9233,202.5317] | [188.1455,204.7539] | [190.4653,207.0737] [187.0656,203.674]
NTEEGE [88.96954,96.19195] [186.5684,200.3989] | [188.7906,202.6211] | [191.1104,204.9409] | [187.7107,201.5412]
NGE [92.09421,99.87432] [188.2608,203.7663] | [188.8608,204.3663] | [190.5318,206.0373] [188.832,204.3375]

Table 4 compares the NOLGE distribution with sex other neutrosophic distributions using information criteria and negative
logarithmic function (-L). the results shows NOLGE distribution performed exceptionally well, recording the lowest information criteria
values in most cases compared to the other distributions. this suggests that NOLGE distribution is more efficient at modeling data while
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reducing model complexity. These results reinforce NOLGE's superiority in providing a better balance between accuracy and simplicity,
making it a strong candidate for data analysis under uncertainty.

Table 5 . value of the statistical measures

Dist. W A K-S p-value
NOLGE [0.04494521,0.04979327] | [0.2624134,0.28484] | [0.1176604,0.1253289] | [0.8197149, 0.8713342]
NBeGE [0.06792112,0.08741665] | [0.3771706,0.4937468] | [0.1435358, 0.268247] [0.05956844,0.6781621]
NKuGE [0.07413739,0.09087818] | [0.4153534,0.5157557] | [0.1522436,0.2950746]1 | [0.02861457,0.607189]
NEGGE [0.07159541,0.07320745] | [0.4007221,0.4092349] | [0.1282813,0.1295094]1 | [0.7890527,0.7982154]
NLGamGE [7.227293, 7.227405] [45.82877, 45.85284 | [0.9841392,0.9946239] | 4.440892¢-16

NTEEGE [0.06795516,0.0700356] | [0.3778144, 0.3893318] | [0.1588924, 0.1611754] | [0.5358761,0.553846]
NGE [0.08148869,0.08332876] | [0.4577023,0.4677389] | [0.2444697,0.261] [0.07171139, 0.1073506]

Table 5 evaluate the performance of the distributions using some statistical measures. NOLGE distribution performed better on
the K-S statistics than other distributions such us NKuGE demonstrating a better convergence between the data and the model. The p-
value for NOLGE was high, confirming that there was no evidence to reject the goodness-of-fit hypothesis, unlike distributions such as
NKuGE, which recorded low p-values. These results confirm the NOLGE provides a more reliable statistical fit to the real data than other

distributions.
Table 6. Estimator value interval for parameters by MLE

Dist. ™ ity by Cy

NOLGE [0.06044682,5.35617856] | [1.56437111,5.53381522] [0.01762876,0.06342953] [1.26461437,1.51203034]
NBeGE [1.16508722,1.6517759] [0.09953987,0.4698984] [0.1095705,0.47460313] [0.55594414,1.6978604]
NKuGE [1.0817318,1.40013684] [0.1038297,0.89767281] [0.05793171,0.4670658] [0.4686354,1.46052338]
NEGGE [0.8377522,0.8954365] [1.5989327, 1.7174486] [0.0673655,0.0986491] [1.5520771,1.6442189]
NLGamGE [1.47187623,1.6799803] [0.7201890,0.90885039] [0.05764093,0.1330494] [1.02119949, 1.5765075]
NTEEGE [0.88082429,0.88654756] | [1.54093053,1.59309664] [0.04644511,0.05870377] [1.35292695,1.43715812]
NGE --- [0.03528371,0.0501071] [0.98810296,1.0637076]

Table 6 shows the parameter estimation intervals for studied distributions. for NOLGE, parameter estimates were within
reasonable ranges. Compared to the other distributions, NOLGE estimates showed better consistency, with no extreme or unstable values,
as in case of NBeGE or NKuGE. This reflects NOLGE's ability to accurately estimate parameters even in the presence of neutrosophic

uncertainty.

In addition to the three previous tables, a visual test is conducted by drawing the fitting NPDFs of NOLGE with histogram data
set, in addition to drawing the empirical fitted NCDFs with data set used for the proposed distribution and other comparative distributions,
as shown in figures 6 and 7 as follows.
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Fitted NGE
Figure 7: Empirical Fitted CDFs with data set used

Figure 6 shows the fit of NOLGE's NPDF to the data histogram. It can be seen that the NOLGE curve closely follows the data
distribution, confirming its ability to accurately represent the data. Figure 7 compares the NCDFs with theoretical NCDFs of various
distributions, such as NBeGE or NKuGE, which exhibit significant deviations.

These visual results support the quantitative conclusions from the tables, confirming NOLGE's superiority in modeling data.

Conclusion

The proposed distribution demonstrated outstanding performance when compared to six other neutrosophic distributions (e.g.,
NBeGE, NKuGE, and NEGGE). It recorded the lowest information criterion values, indicating its high efficiency in achieving a balance
between accuracy and model simplicity. This makes it an ideal choice for analyzing complex data involving a high degree of uncertainty.
Through neutrosophic Monte Carlo simulations, the weighted least squares (WLSE) method outperformed other estimation methods (MLE
and LSE) in most scenarios, especially as the sample size increased, reflecting its high accuracy in parameter estimation under uncertain
conditions. The study provides an integrated theoretical and practical framework for integrating neutrosophic logic with probability
distributions, opening new horizons for data analysis under uncertain conditions. This represents an important advance in fields such as
engineering, medical sciences, and economics, where data are often incomplete or inconsistent. While NOLGE distribution offers a
powerful framework for analyzing data under uncertainty, it may have limitations, such as the small size of the data studied or the limited
study of battery life, which may not fully represent the behavior of data in other fields such as medicine or economics. These limitations
highlight the need for further research to deepen its understanding and improve its applications. Overcoming these limitations could make
it a more powerful tool in fields such as artificial intelligence and decision science.

References

1. Abd El-latif, A. M., Almulhim, F. A., Noori, N. A., Khaleel, M. A., & Alsaedi, B. S. (2025). Properties with application to
medical data for new inverse Rayleigh distribution utilizing neutrosophic logic. Journal of Radiation Research and Applied
Sciences, 18(2), 101391.

2. Alanaz, Mazin M., Marwah Yahya Mustafa, and Zakariya Yahya Algamal. "Neutrosophic Lindley distribution with application
for Alloying Metal Melting Point." International Journal of Neutrosophic Science (IJNS) 21.4 (2023).

3. Khan, Z., Almazah, M. M., Hamood Odhah, O., & Alshanbari, H. M. (2022). Generalized pareto model: properties and
applications in neutrosophic data modeling. Mathematical Problems in Engineering, 2022(1), 3686968.

4. Alanaz, M. M., & Algamal, Z. Y. (2023). Neutrosophic exponentiated inverse Rayleigh distribution: Properties and
Applications. International Journal of Neutrosophic Science (IJNS), 21(4).

5. Al-Saqal, O. E., Hadied, Z. A., & Algamal, Z. Y. (2025). Modeling bladder cancer survival function based on neutrosophic
inverse Gompertz distribution. International Journal of Neutrosophic Science (IJNS), 25(1).

6. Algamal,Z. Y., Alobaidi, N. N., Hamad, A. A., Alanaz, M. M., & Mustafa, M. Y. (2024). Neutrosophic Beta-Lindley distribution:
mathematical properties and modeling bladder Cancer data. Int J Neutrosophic Sci, 23, 186-6.

7. Al-Essa, L. A., Jamal, F., Shafiq, S., Khan, S., Abbas, Q., Khan Sherwani, R. A., & Aslam, M. (2025). Properties and Applications
of Neutrosophic Burr XII Distribution. International Journal of Computational Intelligence Systems, 18(1), 10.

8. Mustafa, M. Y., & Algamal, Z. Y. (2023). Neutrosophic inverse power Lindley distribution: A modeling and application for
bladder cancer patients. International Journal of Neutrosophic Science (IJNS), 21(2).

9. Ahsan-ul-Haq, M., Zafar, J., Aslam, M., & Tariq, S. (2024). Neutrosophic topp-leone distribution for interval-valued data
analysis. Journal of Statistical Theory and Applications, 23(2), 164-173.

10. Alsaab, N. (2025). Data Modelling and Analysis Using Odd Lomax Generalized Exponential Distribution: an Empirical Study
and Simulation. [raqi Statisticians journal, 146-162.

11. Odeyale, A. B., Gulumbe, S. U., Umar, U., & Aremu, K. O. (2023). New New Odd Generalized Exponentiated Exponential-G
Family of Distributions. UMYU Scientifica, 2(4), 56-64.

12. Khalaf, A. A., Ibrahim, M. Q., & Noori, N. A. (2024). [0, 1] Truncated Exponentiated Exponential Burr type X Distributionwith
Applications. Iraqi Journal of Science, 4428-4440.

13. Noori, N. A., Khalaf, A. A., & Khaleel, M. A. (2024). A new expansion of the Inverse Weibull Distribution: Properties with
Applications. Iraqi Statistians Journal, 1(1), 52-62.

14. Bhatti, F. A., Hamedani, G. G., Korkmaz, M. C., Cordeiro, G. M., Yousof, H. M., & Ahmad, M. (2019). On Burr III Marshal
Olkin family: development, properties, characterizations and applications. Journal of Statistical Distributions and
Applications, 6(1), 1-21.

15. Gémez, H.J., Santoro, K. I., Barranco-Chamorro, 1., Venegas, O., Gallardo, D. I., & Gémez, H. W. (2023). A Family of Truncated
Positive Distributions. Mathematics, 11(21), 443 1.

16. Ishaq, A. L., Panitanarak, U., Abiodun, A. A., Suleiman, A. A., & Daud, H. (2024). The generalized odd maxwell-kumaraswamy
distribution: Its properties and applications. Contemporary Mathematics, 711-742.

17. Al-Habib, K. H., Khaleel, M. A., & Al-Mofleh, H. (2023). A New Family of Truncated Nadarajah-Haghighi-G Properties with
Real Data Applications. Tikrit Journal of Administrative and Economic Sciences, 19(2), 311-333.

18. Khaleel, M. A., Oguntunde, P. E., Al Abbasi, J. N., Ibrahim, N. A., & AbuJarad, M. H. (2020). The Marshall-Olkin Topp Leone-
G family of distributions: A family for generalizing probability models. Scientific African, 8, €00470.

19. Abdelall, Y. Y., Hassan, A. S., & Almetwally, E. M. (2024). A new extention of the odd inverse Weibull-G family of



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

59

distributions: Bayesian and non-Bayesian estimation with engineering applications. Computational Journal of Mathematical and
Statistical Sciences, 3(2), 359-388.

Alsaab, N. (2024). Estimation and Some Statistical Properties of the hybrid Weibull Inverse Burr Type X Distribution with
Application to Cancer Patient Data. Iraqi Statisticians journal, 8-29.

Oguntunde, P. E., Khaleel, M. A., Okagbue, H. 1., & Odetunmibi, O. A. (2019). The Topp—Leone Lomax (TLLo) distribution
with applications to airbone communication transceiver dataset. Wireless Personal Communications, 109, 349-360.

Abid, S., & Abdulrazak, R. (2018). [0, 1] truncated Frechet-Weibull and Frechet distributions. International Journal of Research
in Industrial Engineering, 7(1), 106-135.

Hussain, S., Ul Hassan, M., Rashid, M. S., & Ahmed, R. (2023). Families of Extended Exponentiated Generalized Distributions
and Applications of Medical Data Using Burr III Extended Exponentiated Weibull Distribution. Mathematics, 11(14), 3090.
Noori, N. A. (2023). Exploring the Properties, Simulation, and Applications of the Odd Burr XII Gompertz
Distribution. Advances in the Theory of Nonlinear Analysis and its Application, 7(4), 60-75.

Aslam, M. (2021). A new goodness of fit test in the presence of uncertain parameters. Complex & Intelligent Systems, 7(1), 359-
365.

Noori, N. A., Khalaf, A. A., & Khaleel, M. A. (2023). A New Generalized Family of Odd Lomax-G Distributions: Properties
and Applications. Advances in the Theory of Nonlinear Analysis and its Applications, 7(4), 01-16.

Mahdi, G. A., Khaleel, M. A., Gemeay, A. M., Nagy, M., Mansi, A. H., Hossain, M. M., & Hussam, E. (2024). A new hybrid
odd exponential-® family: Properties and applications. AIP Advances, 14(4).

Cordeiro, G. M., Alizadeh, M., Ramires, T. G., & Ortega, E. M. (2017). The generalized odd half-Cauchy family of distributions:
Properties and applications. Communications in Statistics-Theory and Methods, 46(11), 5685-5705.

Rahman, M. M., Gemeay, A. M., Islam Khan, M. A., Meraou, M. A., Bakr, M. E., Muse, A. H., ... & Balogun, O. S. (2023). A
new modified cubic transmuted-G family of distributions: Properties and different methods of estimation with applications to
real-life data. AIP Advances, 13(9).

© 2025 by the authors. Disclaimer / Publisher’s Note: The views, opinions, and data presented in all
published content are solely those of the individual authors and contributors. They do not necessarily reflect

/"—*-7-«.\ the positions of Sphinx Scientific Press (SSP) or its editorial team. SSP and the editors disclaim any

s P \\ responsibility for harm or damage to individuals or property that may result from the use of any information,
—y methods, instructions, or products mentioned in the content.



