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1. Introduction

The study of distributions in higher dimensions plays a central role in statistics, probability theory, and
their numerous applications. In particular, bivariate distributions provide a natural framework for model-
ing dependence structures and interactions between random variables. Classical approaches often rely on
Gaussian-type distributions due to their analytical tractability and wide applicability. However, the search
for new families of distributions that retain Gaussian-like distribution properties while offering additional
flexibility remains an active area of research. See, for example, [5, 2, 4, 6].

The purpose of this article is to contribute to this line of research by introducing the bivariate cosine
Gaussian (BCG) distribution. This distribution is constructed by incorporating a trigonometric component
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into the standard bivariate independent Gaussian distribution framework, thereby enriching its structure
while preserving fundamental features such as symmetry and integrability. Particular attention is given to
the behavior of the associated probability density function. Theoretical results on its marginal and condi-
tional distributions are established, together with an analysis of independence properties. Numerical illus-
trations and a simulation procedure are also provided, highlighting the flexibility and potential applications
of the BCG distribution in two-dimensional modeling problems.

The remainder of the article is organized as follows: Section 2 introduces the BCG distribution, with a
focus on the associated probability density function. The corresponding marginal and conditional distribu-
tions are studied in Section 3. Section 4 is devoted to the analysis of independence. A simulation procedure
is presented in Section 5. Finally, concluding remarks are given in Section 6.

2. A new bivariate trigonometric Gaussian distribution

We begin by presenting a specific probability density function that extends the standard bivariate inde-
pendent Gaussian framework through the inclusion of a trigonometric component.

Proposition 2.1. Let 6 € R. Then the following function is a valid bivariate probability density function:
fx,y) = Cle ¥ /22 cos’(6xy), (x,y) € R?,

where

1
C= ﬂ(l + —)
V1 + 462
Proof. First of all, it is clear that, for any (x, y) € R?, f(x,y) > 0. We now complete the proof by establishing
the following normalization condition: L o; L o; f(x,y)dxdy = 1. We can write

f f f(x,y)dxdy = C7'I, 2.1)
I= f f e X1 cos(6xy)dxdy.

Using the following standard trigonometric formula: cos?(a) = [1 + cos(2a)]/2 for a € R, we have

= f f e 122 cos(Bxy)dxdy
f f TR }2/21 + cos(20xy)d dy
(f f 22 2y + f f %[22 cos(29xy)dxdy)

= E(I‘ + 1), (2.2)

I, = foo foo e‘xz/z_yz/zdxdy
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and

L = f f e " 12712 008 (20xy)dxdy.

Let us first determine /;. Using the following classical integral formula: f_ : e P dx = [/ p (see [3,

Formula 3.4613]) with p = 1/2, we get

I, = f f e—x2/2—y2/2dxdy — (f e_xz/de) (f e—yZ/Zdy) — (@)2 -

Let us now focus on ;. By the Fubini-Tonelli integral theorem, we can write

L= f f eI cos(20xy)dxdy

= f e ( f e <12 cos(20xy)a’x) dy.

(2.3)

Using the following integral formula: [ 0; e P cos(gx)dx = +Jm/pe 7P (see [3, Formula 3.8964])

with p = 1/2 and g = 26y, we obtain

f‘x’ e cos(20xy)dx = /ie_(zng/(‘m/z) = 27 2,
—oo 1/2

This and again the following integral formula: f_ o:o e P dx = i/ p with a suitable p yield

f e/ ( f e 12 cos(29xy)dx) dy

= [T e Name iy = N [ e0nanigy

(%)

Pis 2
= 2 = .
N2 20 T iz

‘We thus have
2
VI+4¢2

Finally, based on Equations (2.2), (2.3) and (2.4), we derive

12:

1 2 1
=1 2_)(1_)c
2( V1 + 462 V1 + 462

It follows from this and Equation (2.1) that

f f f(x,y)dxdy = C™'C = 1.

(2.4)
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The function f(x,y) is thus a valid bivariate probability density function. The proof is concluded. O

We emphasize that € R, without restriction. Based on this proposition, we define the BCG distribution
with parameter 6 as the distribution whose probability density function is given by

flxy) = Cle P2 cos’(Oxy),  (x,y) € R?,
where

1
C=nlt+———)
VI + 462

We begin the study of this distribution by examining some properties of f(x,y). First, since both the square
and cosine functions are even, it is even in each coordinate, i.e., for any (x,y) € R2,

f(—x,)’) = f(x9 _y) = f(x,)’)

Moreover, it is clearly symmetric, i.e., for any (x,y) € R?,

&y =@, x).

When 6 = 0, since cos(0) = 1 and C = 2, we have

1 2 2
_ )
fx,y) e -

The BCG distribution thus reduces to the standard bivariate independent Gaussian distribution.

Since, for any (x,y) € R? and 0 € R, 0 < cos?(dxy) < 1, we have the following inequality:
f(x,y) < C—le—x2/2—y2/2,

ensuring diverse integral convergence properties. This is crucial to the existence of various moments asso-
ciated with the BCG distribution.

To provide a visual representation, Figures 1, 2, 3 and 4 display perspective plots of f(x,y) for 6 = 1,
6 =3,0=>5and8 = 11, respectively.

Innovation in Statistics and Probability Volume 1, Issue 2, 1-17
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f(x, y) = CM-1) *exp(- x"2/2 - y*2/2) * cos™2(1 * x * y)

0.20
0.15
0.10
0.05

Figure 1. Perspective plot of the probability density function of the BCG distribution for 6 = 1.

f(x, y) = CN=1) * exp(= X2/ 2 — y"2 / 2) * cos*2(3 * x * y)

Figure 2. Perspective plot of the probability density function of the BCG distribution for 6 = 3.

Innovation in Statistics and Probability Volume 1, Issue 2, 1-17
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f(x, y) = CA(=1) * exp(= x*2/ 2 — y"2/ 2) * cos™2(5 * x * y)

Figure 3. Perspective plot of the probability density function of the BCG distribution for 6 = 5.

f(x, y) = CMN-1) *exp(- x"2/2 - y*2/2) * cos"2(11 * x * y)

-2 0 2
X

Figure 4. Perspective plot of the probability density function of the BCG distribution for § = 11.

From these figures, we observe that the probability density function of the BCG distribution may be
centered around the origin, or may exhibit more complex oscillatory patterns depending on the value of
6. In particular, star-like and circular shapes can be distinguished. These are very different from the usual
elliptical contours associated with a classical bivariate Gaussian distribution.

Innovation in Statistics and Probability Volume 1, Issue 2, 1-17
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This probability density function could be useful for modeling the interactions of two variables with
periodic effects, such as coupled oscillators with Gaussian noise in physics, cyclic dependencies in financial
returns or features that are nonlinearly dependent with a hidden periodic structure in machine learning.

In the next section, we further develop the theory by examining the corresponding marginal and condi-
tional distributions.

3. Marginal and conditional distributions

3.1. Marginal distributions
The proposition below establishes the marginal distributions associated with the BCG distribution.

Proposition 3.1. Let 6 € R. Then the marginal distributions associated with the BCG distribution with
parameter 0 are defined by the two following probability density functions:

e with respect to x:
2 2.2
g(x)=D7le™/? (1 +e 20 ), x€R,
where

1
D= v—zﬂ(l + —)
V1 +46°

e with respect to y:
h(y) = D' (1+e ) =g(y), yeR.

Proof.

e By definition, the probability density function associated with the marginal distribution with respect
to x is given by

g(x) =f f(x,ydy, xeR.

Using the following standard trigonometric formula: cos?(a) = [1 + cos(2a)]/2 for a € R, we have

g(x):f C‘le‘xz/z_yz/zcosz(exy)dy

(%)

_ el foo 7 2 1+ cos(20xy) dy

- 2
1 > -
:C_li(e_xz/zf e—y2/2dy+e—x2/2f e cos(20xy)dy)
1
= € 210 + o), G-
where 00
at = [ iy
and

g (x) = e f e cos(260xy)dy.

(89)

Innovation in Statistics and Probability Volume 1, Issue 2, 1-17
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Let us first determine g;(x). Using the following integral formula: f_ D:O e"’yzdy = /n/p with p = 1/2,
we get

gi(x) = e f e Pdy = \2me 2, (3.2)

[ee)

Let us now focus on g,(x). Using the following integral formula: | O:o e cos(qy)dy = Jr/pe /4P
with p = 1/2 and g = 26x, we obtain

f ) ™12 cos(20xy)dy = /%e-@e@z/@xm = 27 2%,

We thus get

g(x) = e f e cos(20xy)dy = V2re 2% o212, (3.3)

o0

Finally, based on Equations (3.1), (3.2) and (3.3), we have

1
g(x) = C_li ( V2rme ™% + \/ﬂe_zgzxze_"Q/z)

=C! \/Ee_xz/2 (1 + 6_292)‘2)
2

=Dl (1 + e’zez"z).

e By definition, the probability density function associated with the marginal distribution with respect
to y is given by

h(y) = f:: fx,y)dx, yeR.
Since, for any (x,y) € R?, f(x,y) = f(y, x), we have h(y) = g(y), i.e.,
h(y)=D"e??(1+e2Y), yeR.
This completes the proof. O

Before presenting further analytical results, Figure 5 displays g(x) for8 = 0.5,6 =1, and 6 = 2.

Innovation in Statistics and Probability Volume 1, Issue 2, 1-17
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d(x) for different theta
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Figure 5. Standard plots of the marginal probability density function of the BCG distribution
with respect to x for = 0.5, 6 =1 and 6 = 2.

We observe that g(x) is symmetric and bimodal, except in the special case § = 0, where it is reduced
to a unimodal distribution, i.e., the standard Gaussian distribution. This behavior can be explained analyti-
cally, since g(x) has a mixture Gaussian probability density function representation, as detailed below. For
convenience, let s = 1 + 46 and o = 1/s. Then, for any x € R, we can write

8(x) = api(x) + (1 - @) ¢s, (%),

where
Vs
a =
Vs+1
and ¢,(x) 1s the probability density function associated with the Gaussian distribution with mean 0 and
variance o2, i.e.,

1
@ (x) = 2/ x eR.

—€
o\2r

From this representation, the shapes observed in Figure 5 can be naturally explained. Moreover, let (X, Y)
denote a random vector following the BCG distribution with parameter . Using the mixture Gaussian
probability density function representation, we can easily derive the mean and variance of X as

E(X)=0

and

1 14(1+462)30
VX)) =ax1+(l-a)x- = :
X)=axl+ - =T ae)n

Innovation in Statistics and Probability Volume 1, Issue 2, 1-17
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with V(X) = 1 only when 6 = 0. The same expressions hold for E(Y) and V(Y), respectively.

These results can be used to better understand the impact of the parameter 6 on the BCG distribution. In
particular, the variances of X and Y decrease as |6] increases, reflecting the concentration of mass around
the origin induced by the cosine term. This behavior highlights how the BCG distribution departs from the
classical bivariate Gaussian distribution. In particular, it illustrates its ability to capture stronger localization
and oscillatory effects. Such insights are valuable both for theoretical analysis and for guiding potential ap-
plications in multivariate modeling where additional flexibility beyond the Gaussian distribution framework
is required.

3.2. Conditional distributions

The proposition below determines the conditional distributions associated with the BCG distribution.

Proposition 3.2. Let 6 € R. Then the conditional distributions associated with the BCG distribution with
parameter 0 are defined by the two following conditional probability density functions:

e with respect to y given x € R:

2 2 cos (0
Ky lx) = |20 g

14 e

e with respect to x given 'y € R:

2 —x2/2 29
f(xly):\/;e Cos(xy), x €R.

1 + 2627
Proof.
e By the definition of a conditional distribution with respect to y given x € R, we have

AC))

, e R.
g(x)

k(y | x)

We therefore derive

k(y | x) =

C e 12712 cos?(Oxy) B \/Ee‘yz/2 cos?(6xy)
D-1le=/2 (1 + 6*292)‘2) N7 142

e Similarly, by the definition of a conditional distribution with respect to x given y € R, we have

iy =L

We therefore derive

C e 12712 cos?(Oxy) 2 e 12 cos?(Oxy)
x|y = =\

D-le/2 (1 + e—zeZyZ) 1+ 207

Innovation in Statistics and Probability Volume 1, Issue 2, 1-17
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This completes the proof. O
For a graphical illustration, Figure 6 displays k(y | x) for = 0.5, =1 and 8 = 2, and x = 1.

Conditional probability density function k(y|x), with x = 1

8 - —— theta=0.5
— theta=1
— theta=2
[Te]
i
<
3
=
J— o _l
> o
<
N
o
S -
o
S -
T T T T T T T
-6 -4 -2 0 2 4 6

y
Figure 6. Standard plots of the conditional probability density function of the BCG distribution
for0=05,0=1and @ =2,and x = 1.

From this figure, we observe both the symmetry and the multimodal patterns induced by the cosine
component.

Let (X, Y) be a random vector following the BCG distribution with parameter 6. Based on Proposition
3.2 and after some integral calculations (omitted here for brevity), we obtain

EY|X=x)=0, EX|Y=y)=0,

1+ (1 — 462x2)e~ 20"

V(Y| X =x) = T

and
1+ (1 — 46%y%)e 20
1 + 2%

These conditional means and variances can be used to show the non-Gaussian distribution nature of the BCG
distribution. In particular, the conditional variances exhibit a nontrivial dependence on the conditioning
variable. This dependence is modulated by both the parameter 6 and the magnitude of x or y, leading to a
reduction in conditional variability as |x| or |y| increases. These results emphasize the flexibility of the BCG
distribution in capturing interaction effects between variables. They also provide a theoretical foundation
for potential applications in areas such as dependence modeling, risk analysis, and spatial statistics.

The next section presents a classical independence analysis, which had only been outlined briefly in the
preceding sections.

VX |Y=y)=

Innovation in Statistics and Probability Volume 1, Issue 2, 1-17
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4. Independence analysis

The proposition below focuses on the basic stochastic dependence associated with the BCG distribution.

Proposition 4.1. Let 6 € R, and (X, Y) be a random vector following the BCG distribution with parameter
6. Then X and Y are stochastically independent if and only if 6 = 0.

Proof. By the definition of the stochastic independence, using the expressions of the corresponding proba-
bility density functions, X and Y are independent if and only if, for any (x,y) € R2,

f(x,y) = g(0h(y),

1.e.,
_ 292 _ 42 _np2,2 _ 2 _9p2.,2
Cle™ /2 cos’(Bxy) = D 'e x/2(1+e 2G’C)D le™ /2(1+e 29}).

This is possible if and only if 8 = 0. The proof is completed. O

The proposition below concerns the linear dependence associated with the BCG distribution.

Proposition 4.2. Let 6 € R, and (X, Y) be a random vector following the BCG distribution with parameter
6. Then X and Y are linearly independent.

Proof. By considering the covariance of X and Y defined by C(X, Y) = E(XY) — E(X)E(Y), we aim to prove
that C(X, Y) = 0. Since, for any (x,y) € R?,

f(_x’y) = f(x,)’),

we have
E(XY) = E(-X)Y) = —E(XY).

which implies that
E(XY) = 0.

Moreover, since, for any x € R,
g(=x) = D7l V2 (1 + 6_292(_x)2) =D e (1 + e‘zezxz) = g(x),
we have E(X) = 0. We also have E(Y) = 0. This implies that C(X, Y) = 0. The proof is concluded. |

For a random vector (X, Y) following the BCG distribution with parameter 6, the dependence between X
and Y can be characterized as oscillatory and circular. To the best of our knowledge, no suitable dependence
measure has yet been established for this type of relationship, and clarifying the exact role of 8 in this
dependence remains an open mathematical challenge.

A simple simulation procedure to generate samples of values from the BCG distribution is developed in
the next section.

Innovation in Statistics and Probability Volume 1, Issue 2, 1-17
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5. Simulation procedure

Since the BCG distribution does not admit a closed-form sampling method, we rely on the accept-reject
algorithm with the standard bivariate independent Gaussian distribution as proposal. For more details on
this method, see [1].

The procedure can be summarized in the following four steps:

Step 1. Recall that the probability density function of the BCG distribution with parameter 6 is given by
faey) =C e P P eos’(xy),  (xy) € R

where

1
C:n(1+—).
V1 + 462

Step 2. We choose the standard bivariate independent probability density function defined by
1 —x2/2—y2)2 2
p(x,y) = =T (xny) €R,
2r

as the proposal distribution. Notice that, for any (x,y) € R?, we have
Cf(x,y) = 2n(x,y) cos*(Oxy) < 2m¢(x, y).

Step 3. To generate a random value (x, y) from the BCG distribution, the process is as follows:

1. Generate a candidate (x*, y*) from the standard bivariate independent Gaussian distribution.
2. Generate a value u from the uniform distribution over (0, 1).
3. Accept (x*,y") if

_ Crey)

2 *_ %
——=— = cos”(Ox"y").
2r¢(x*, y*) (5)

Otherwise, reject and repeat.

Step 4. Repeat Step 3 until the desired sample size n is obtained. The accepted points form a sample derived
from the BCG distribution.

To provide a visual illustration of this simulation procedure, Figures 7, 8, 9 and 10 display scatter plots
of samples of size n = 500 generated from the BCG distribution for 6 = 0.5,0 = 1,6 = 2 and 6§ = 5,
respectively.

Innovation in Statistics and Probability Volume 1, Issue 2, 1-17



420

Figure 7. Scatter
6 =0.5.

Simulated sample from the BCG distribution, theta=0.5
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Figure 8. Scatter plot of a sample of size n = 500 generated from the BCG distribution for 8 = 1.
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Simulated sample from the BCG distribution, theta=2
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Figure 9. Scatter plot of a sample of size n = 500 generated from the BCG distribution for 6 = 2.

Simulated sample from the BCG distribution, theta=5
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Figure 10. Scatter plot of a sample of size n = 500 generated from the BCG distribution for
0=>5.

From these figures, we observe that the points tend to form star-like and circular structures that are
visually consistent with the shapes of the probability density function of the BCG distribution. We refer to
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Figures 1, 2, 3 and 4.
6. Conclusion

In conclusion, the BCG distribution provides a flexible cosine extension of the classical bivariate inde-
pendent Gaussian distribution, combining tractable theoretical properties with a richer dependence struc-
ture. Future work could consider the complementary bivariate sine Gaussian (BSG) distribution, defined by
the following probability density function:

fy) = U e 2 Psind(6xy),  (x,y) € R,
where

1
v=rli-——).
V1 + 462
In a more general way, we can think of studying the generalized trigonometric distribution defined by the
following probability density function:

fny) = W e 22 (1 — peos(6xy)),  (x,y) € R?,

withn € [-1,1],and Wis such that [~ [~ f(x,y)dxdy = 1. Focusing on the BCG distribution itself, future
research could also explore higher-dimensional generalizations, parameter estimation methods, and prac-
tical applications in areas such as finance, environmental modeling, or machine learning, where capturing
nontrivial interactions between variables is particularly important.
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