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ABSTRACT

This research explores how Generative Artificial Intelligence (Al)
can be used to accelerate drug discovery, especially in developing na-
tions like Nigeria. By integrating various generative models; includ-
ing GANs, VAEs, and Transformer-based architectures—the study
aims to rapidly create new molecular structures with therapeutic po-
tential. A unique aspect of this research is its use of local Nige-
rian resources, such as indigenous medicinal plants and traditional
knowledge, to create a specialized dataset. By combining this lo-
cal data with global molecular databases, the framework is designed
to find candidate molecules with better drug-likeness, lower toxic-
ity, and higher binding affinity to target proteins. This approach not
only speeds up the preclinical phase of drug discovery but also pro-
motes sustainable healthcare innovation by utilizing Nigeria’s own
resources. The study highlights its potential application in finding
treatments for malaria, sickle cell disease, and antimicrobial resis-
tance—all major health concerns in Nigeria.

1. Introduction

The traditional drug discovery process is costly and lengthy, often spanning 10—15 years with invest-
ments exceeding billions of dollars, [2]. This bottleneck is further exacerbated in developing countries such


http://dx.doi.org/ https://doi.org/10.64389/icds.2025.01128
https://sphinxsp.org/journal/index.php/icds/
https://sphinxsp.org/journal/index.php/icds/
https://creativecommons.org/licenses/by/4.0/#CC
https://creativecommons.org/licenses/by/4.0/

67

as Nigeria, where limited infrastructure restricts large-scale pharmaceutical research. However, Generative
Al—a branch of Artificial Intelligence that creates new data samples based on learned patterns—offers a
transformative pathway. Using deep learning, generative models can design novel drug-like molecules, op-
timize their chemical properties, and predict interactions with biological targets, [9]. Nigeria possesses rich
biodiversity and ethnopharmacological traditions, with over 5,000 medicinal plant species widely used in
local communities. Despite this, the majority of these bioactive resources remain underexplored in mod-
ern pharmaceutical pipelines. Integrating Nigerian local content with Generative Al frameworks provides
a unique opportunity to accelerate drug discovery while strengthening national research autonomy. This
paper investigates the use of deep generative models for molecular design, emphasizing the integration of
Nigerian medicinal plant data to address high-burden diseases such as malaria, tuberculosis, and sickle cell
anemia, [3].

2. Related Work

2.1. Generative Models for de novo Molecular Design

Early work framed molecule generation as sequence modeling over SMILES, enabling RNN and VAE
architectures to learn chemical grammars and sample drug-like structures. VAEs introduced continuous
latent spaces that support interpolation and gradient-based optimization of properties. GAN variants were
later adapted to molecular graphs/strings to better match the training distribution and improve novelty, [2].
More recently, Transformer and diffusion models have set state-of-the-art results for validity, uniqueness,
and property control, while graph neural networks (GNNs) encode molecular topology directly, avoiding
SMILES fragility. Across these families, conditioning mechanisms (e.g., property-conditioned latents, con-
trol tokens) and constrained sampling (e.g., scaffold or ring-system constraints) are common strategies to
steer generation toward synthesizable, lead-like space, [1].

2.2. Multi-Objective Optimization and Reinforcement Learning

Because real drug leads must satisfy multiple criteria (potency, ADMET, novelty, and synthesizability),
reinforcement learning (RL) has been layered atop generative backbones to optimize composite reward
functions. Popular formulations include policy-gradient fine-tuning of SMILES generators and graph policy
networks that grow molecules atom-by-atom under valence rules. Curriculum RL, Pareto-front optimiza-
tion, and constrained Bayesian optimization over latent spaces have all been explored to stabilize training
and reduce reward hacking. Integration with fast property predictors (QSAR/GNN surrogates) enables
scalable inner-loop evaluation, [4, 6, 7].

2.3. Structure-Based Design: Docking, Scoring, and Diffusion on 3D

Structure-based approaches couple generators with molecular docking, physics-informed scoring, or 3D
equivariant networks. Diffusion models over 3D conformers and protein-ligand complexes can propose
poses and chemotypes consistent with target pockets, narrowing the gulf between ligand- and structure-
based pipelines. Hybrid loops that alternate de novo generation with docking/MD filtering are increasingly
common for kinases, GPCRs, and antimicrobial targets, [11, 13].
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2.4. Synthesis Feasibility and Retrosynthesis

A recurring bottleneck is synthetic accessibility. Data-driven retrosynthesis planners (template-based,
template-free Transformers, and Monte-Carlo tree search) and synthetic accessibility scores (e.g., SA-like
indices) are used to reject hard-to-make compounds. Closed-loop frameworks now condition generation
on retrosynthetic routes or penalize molecules lacking viable precursors, improving “makeability” without
sacrificing novelty, [5, 12].

2.5. Active Learning and Closed-Loop (Self-Driving) Labs

Active learning couples generative models with iterative wet-lab feedback. Surrogates propose batches,
assays return measurements, and models update—tightening uncertainty and improving hit rates. Although
resource-intensive, this paradigm demonstrates accelerated lead optimization when the loop is well cali-
brated and exploration-exploitation balances, [19].

2.6. Molecular Representations and Property Prediction

Accurate, efficient property estimators are vital inside generative loops. Message-passing neural net-
works and Transformer encoders on SMILES/graphs have become the default for QSAR, permeability,
solubility, hERG, and metabolic liability. Self-supervised pretraining (masked-token/edge prediction, con-
trastive learning on augmentations) improves data efficiency—especially important for under-represented
chemistries, [8, 20].

2.7. Data Foundations: Public Chemistries and Local Knowledge

Large public corpora—ChEMBL, PubChem, ZINC, DrugBank—underpin most generative studies.
However, these sets under-represent African ethnopharmacology. Ethnobotanical surveys and phytochem-
ical catalogs from Nigerian institutions (e.g., university herbariums, NIPRD-curated resources) document
bioactive constituents in species such as Azadirachta indica (neem), Vernonia amygdalina (bitter leaf), Oci-
mum gratissimum (scent leaf), Garcinia kola, and Morinda lucida. Prior computational efforts typically
use these plants for ligand-based screening and docking studies rather than for training generative models.
This highlights a clear gap: curating machine-readable Nigerian phytochemical libraries (with structures,
activities, and provenance) and integrating them into modern generative pipelines, [12, 14, 16].

2.8. Knowledge Graphs and Target Prioritization

Biomedical knowledge graphs linking diseases prevalent in Nigeria (malaria, tuberculosis, Lassa fever,
sickle cell disease, AMR pathogens) to pathways, targets, and natural-product scaffolds can guide condi-
tional generation and repurposing. Graph-based reasoning (path ranking, link prediction) has been com-
bined with generative models to suggest target—chemotype pairs, but applications grounded in West African
epidemiology and flora are still sparse, [10, 18].

2.9. Ethics, IP, and Benefit-Sharing

Work at the intersection of Al and indigenous knowledge raises concerns about data rights, benefit-
sharing, and biopiracy. Best practices include community-approved data governance, material transfer
agreements, and transparent attribution when ethnopharmacological leads inspire Al-generated analogs.
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Methodologically, federated learning and secure aggregation can respect data sovereignty while enabling
collaborative model training across Nigerian labs, [15, 17].

2.10. Summary of Gaps and Opportunities
1. 1.Under-representation of Nigerian chemistries in generative training corpora.
2. Limited closed-loop validation using local pathogens/targets and locally accessible assays.

3. Need for multi-objective generators that jointly optimize potency, ADMET, and retrosynthetic acces-
sibility with local reagent availability.

4. Integration of ethnopharmacology-aware conditioning (scaffolds, substructures) to preserve culturally
significant insights while exploring novel chemical space.

We propose a pipeline that
(i) Curates Nigerian plant-derived chemistries into machine-learning-ready form,
(i1) Employs property-conditioned Transformer/diffusion generators,
(iii)) Enforces synthesizability via retrosynthesis-aware constraints tied to regional supply chains, and

(iv) Targets Nigeria-relevant diseases, closing the documented gaps above.

3. Methodology

3.1. Research Design

This study adopts a hybrid computational framework integrating generative deep learning models with
curated Nigerian ethnopharmacological datasets. The pipeline consists of four primary stages: data ac-
quisition and preprocessing, model development, property evaluation and optimization, and validation and
synthesis feasibility analysis. The methodology emphasizes inclusion of local medicinal plant content to
ensure cultural relevance and applicability to Nigeria’s healthcare needs.

3.2. Data Acquisition and Preprocessing
3.2.1. Nigerian Local Content Curation

e Ethnopharmacological literature, phytochemical databases, and laboratory records from Nigerian re-
search institutes (e.g., NIPRD, university herbariums) will serve as primary data sources.

e Compounds derived from indigenous plants such as Azadirachta indica (neem), Vernonia amygdalina
(bitter leaf), Garcinia kola (bitter kola), and Morinda lucida will be extracted.

e Each compound’s molecular structure (SMILES/InChl), bioactivity data, and traditional therapeutic
use will be documented.
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3.2.2. Data Standardization
e All molecular structures will be standardized using cheminformatics toolkits (e.g., RDKit).
e Duplicates, invalid molecules, and incomplete records will be removed.
e Descriptors such as molecular weight, LogP, TPSA, hydrogen bond donors/acceptors, and synthetic
accessibility scores will be computed for downstream filtering.
3.2.3. Integration with Global Databases

e Nigerian datasets will be augmented with molecules from ChEMBL, PubChem, and ZINC to create a
diverse training corpus.

e Class balancing will be applied to ensure Nigerian-derived compounds are adequately represented

during model training.

3.3. Generative Model Development
3.3.1. Model Selection
e Variational Autoencoders (VAEs): For learning smooth latent representations of molecules.

e Generative Adversarial Networks (GANs): For generating novel molecular graphs with enhanced di-
versity.

e Transformer-based Sequence Models: For SMILES string generation with long-range chemical de-
pendency capture.

e Diffusion Models: For exploring 3D conformational space and protein—ligand interactions.

3.3.2. Model Training

e Nigerian phytochemical data will be used to fine-tune pre-trained generative models to ensure local
chemotype representation.

e Training objectives will include maximizing novelty, validity, and drug-likeness while incorporating
disease-specific conditioning signals (e.g., malaria target proteins).
3.4. Property Evaluation and Multi-Objective Optimization

¢ Generated molecules will be screened using predictive QSAR models (built with GNNs/Transformers)
for properties such as solubility, permeability, hERG toxicity, and metabolic stability.

e Docking simulations against targets relevant to Nigeria (e.g., Plasmodium falciparum enzymes, sickle
cell hemoglobin polymerization sites, resistant bacterial proteins) will be performed.

e Reinforcement Learning (RL) will be applied to guide the generator using a composite reward func-
tion:
R = aDrug likeness + a,Target Affinity + a3Synthetic Accessibility (3.1)

e Nigerian chemical reagents database (where available) will inform synthesis-aware constraints to en-
sure practicality in local laboratories.
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3.5. Validation
3.5.1. In-Silico Validation

e Generated molecules will undergo similarity searches with Nigerian phytochemical scaffolds to ensure
novelty while retaining local pharmacological relevance.

e Benchmarking against baseline generative models trained only on global datasets will evaluate the
added value of local content integration.

3.5.2. Experimental Feasibility

e Top-ranked candidates will be mapped to synthetic routes using retrosynthesis prediction tools (e.g.,
template-free Transformer-based models).

e Collaboration with Nigerian laboratories will allow small-scale synthesis and in-vitro assays for anti-
malarial, anti-sickle cell, and antimicrobial activities.

3.6. Ethical and Governance Considerations

e All indigenous knowledge will be curated with respect to community ownership, benefit-sharing, and
intellectual property rights.

e Compliance with the Nagoya Protocol will ensure equitable use of Nigeria’s biodiversity.

e Results and models will be shared through open-access repositories while protecting sensitive indige-
nous datasets via federated learning approaches.

4. Applications in Nigeria

4.1. Antimalarial Drug Discovery

Malaria remains one of the most pressing public health challenges in Nigeria, with millions of cases
reported annually. Current frontline treatments such as artemisinin-based therapies face increasing risks
of resistance. By training generative Al models on bioactive compounds from Nigerian medicinal
plants—notably Azadirachta indica (neem), Cryptolepis sanguinolenta, and Morinda lucida—the frame-
work can propose novel scaffolds with antimalarial potential. Deep learning-driven docking simulations
against Plasmodium falciparum targets (e.g., dihydrofolate reductase, cytochrome bc1 complex) can rapidly
prioritize candidate molecules for laboratory validation. This approach offers a localized and sustainable
pipeline for producing next-generation antimalarial agents.

4.2. Sickle Cell Disease (SCD) Therapeutics

Nigeria carries the highest global burden of sickle cell disease, making it a critical focus for precision
drug discovery. Traditional remedies such as extracts from Carica papaya leaves and Garcinia kola seeds
have shown anecdotal therapeutic value in managing SCD symptoms. By encoding these molecules into
generative models, the system can design optimized analogs with enhanced bioactivity, reduced toxicity, and
improved stability. For instance, candidate molecules can be designed to inhibit hemoglobin polymerization
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or modulate oxidative stress pathways. This could lead to affordable, Al-designed drugs tailored to Nigerian
patients, reducing reliance on expensive imported therapies.

4.3. Antimicrobial Resistance (AMR)

The rise of drug-resistant bacterial infections poses a growing health threat in Nigeria, especially in
rural and peri-urban areas with limited access to advanced antibiotics. Nigerian ethnomedicine offers a
rich reservoir of antimicrobial phytochemicals, including those from Vernonia amygdalina (bitter leaf) and
Ocimum gratissimum (scent leaf). Generative Al can combine these local phytochemical scaffolds with
global antibacterial libraries to propose novel hybrid molecules targeting resistant strains of Escherichia
coli, Staphylococcus aureus, and Klebsiella pneumoniae. The integration of reinforcement learning en-
sures that designed molecules maintain drug-likeness and synthesis feasibility, enabling Nigeria to lead in
homegrown antimicrobial solutions.

4.4. Cancer and Non-Communicable Diseases (NCDs)

Beyond infectious diseases, Nigeria faces a growing burden of cancers, diabetes, and cardiovascular dis-
orders. Bioactive compounds from Nigerian plants such as Annona senegalensis and Tetrapleura tetraptera
have shown anticancer and antidiabetic potential. Incorporating these into the generative Al framework
allows the design of multi-target therapeutic candidates—for example, molecules that can act both as an-
tioxidants and kinase inhibitors. This multifunctional drug discovery strategy could reduce polypharmacy
and healthcare costs in resource-constrained settings.

4.5. Pharmaceutical Independence and Local Innovation

By embedding Nigerian local content into Al-driven drug discovery pipelines, this approach advances
pharmaceutical sovereignty—reducing reliance on imported drugs and strengthening Nigeria’s research
ecosystem. Furthermore, this methodology provides opportunities for collaboration between universities,
government agencies, and indigenous communities, ensuring that local knowledge translates into measur-
able innovations while respecting intellectual property rights.

5. Results and Discussion

5.1. Expected Results

Although this study is conceptual at its current stage, the framework is designed to deliver the following
measurable outcomes:

e Novel Molecule Generation: Thousands of unique, chemically valid, and drug-like molecules derived
from Nigerian phytochemical scaffolds.

e Improved Drug-Likeness: Higher average QED (Quantitative Estimate of Drug-likeness) scores com-
pared to baseline models trained only on global datasets.

e Target-Specific Activity: A subset of molecules predicted to show strong binding affinities (< —8 kcal
/ mol) to malaria, sickle cell, and antimicrobial protein targets.
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e [ocal Relevance: Molecules structurally related to indigenous compounds but optimized for potency,
stability, and synthesis feasibility.

5.2. Performance Metrics
To evaluate the performance of the generative pipeline, the following metrics will be applied:
e Validity: Percentage of chemically valid molecules generated (expected > 95%).
e Novelty: Proportion of molecules not present in training datasets (expected > 80%).

e Diversity: Structural diversity measured using Tanimoto similarity (expected > 0.7average pairwise
dissimilarity).

e Drug-Likeness: Assessed by Lipinski’s Rule of Five and QED scores.

e Synthetic Accessibility (SA): Average SA score < 4, ensuring feasibility in Nigerian laboratory con-
texts.

e Docking Affinity: Binding affinity to target proteins compared against existing reference drugs.

5.3. Comparative Advantage of Local Content Integration
The integration of Nigerian local content provides a distinct edge over global-only generative pipelines:

¢ Contextual Relevance: Molecules are optimized against diseases disproportionately affecting Nigeria
(malaria, SCD, AMR).

e Pharmacological Novelty: Local plants provide unique scaffolds rarely represented in international
databases.

e Cost Reduction: By prioritizing molecules aligned with available Nigerian reagents, downstream syn-
thesis costs are minimized.

e Cultural Relevance: Validating indigenous knowledge through Al-driven methods fosters societal ac-
ceptance and enhances translational potential.

5.4. Challenges
Despite the promise of this approach, several challenges are anticipated:

1. Data Availability and Quality. Many Nigerian phytochemical datasets are fragmented, unpublished,
or stored in non-digital formats. A centralized national chemical repository would be essential to
maximize Al effectiveness.

2. Computational Resource Constraints. Training generative deep learning models requires high-
performance GPUs/TPUs, which may be limited in local research institutions.

3. Experimental Validation Bottleneck. While Al can generate promising candidates, limited laboratory
infrastructure may delay synthesis and biological testing.

4. Ethical and Legal Considerations. Ensuring community benefit-sharing and compliance with the
Nagoya Protocol remains a priority. Balancing open science with protection of indigenous intellectual
property is a delicate but necessary task.
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35.5. Discussion

The proposed framework illustrates the transformative role of generative Al in democratizing drug dis-
covery. By tailoring deep learning pipelines to Nigeria’s unique biological and cultural resources, the study
underscores how global Al advances can be localized for national health sovereignty. The integration of
indigenous knowledge with advanced computational approaches positions Nigeria as a potential leader in
Al-powered ethnopharmacology. Moreover, the expected outcomes demonstrate that a hybrid knowledge
system—combining traditional medicine with modern Al—can accelerate discovery while respecting cul-
tural heritage. However, realizing this vision requires strategic investments in data infrastructure, computa-
tional power, and interdisciplinary collaboration across medicine, Al, and indigenous knowledge systems.

Local knowledge Generative Al Computational

& Data Sources Models Screening & Optimization
. e
Nigerian
medicinal plants Variational Generative Drug-likeness Synthetic
Autoencoders  Adversarial filters accessibility
Ethnopharmacology Networks scores

records

Phytochemical libraries {é} I
= e

Reinforcement Molecular Experimental Empowerment
Global open-source

learning docking & results fed of indigenous
molecular datasets binding affinity back into the knowledge
simulations Al pipeline through Al

ChEMBL
PubChem

validation

Validation & Feedback Loop
Figure 1. Proposed Generative Al Framework for Drug Discovery Using Nigerian Local Content
Figure 1 illustrates the end-to-end pipeline for Al-driven drug discovery, integrating Nigerian indigenous
knowledge with deep learning approaches.
a Local Knowledge & Data Sources (Input Layer)

e Nigerian medicinal plants, ethnopharmacology records, and phytochemical libraries.
¢ Global open-source molecular datasets (e.g., ChEMBL, PubChem) for complementary training.

e Data preprocessed into standardized molecular representations (e.g., SMILES, molecular graphs).
b Generative Al Models (Core Engine)

e Variational Autoencoders (VAESs) for latent space exploration.
e Generative Adversarial Networks (GANs) for novel molecule creation.
e Transformer-based models for molecular sequence prediction.

e Reinforcement learning layer to optimize molecules for drug-likeness, safety, and binding affinity.
¢ Computational Screening & Optimization (Filtering Layer)

e Drug-likeness filters (Lipinski’s Rule of Five, QED).

e Synthetic accessibility scores to assess lab feasibility.
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e Molecular docking & binding affinity simulations against Nigerian disease-specific targets (e.g.,
malaria, sickle cell proteins, resistant bacteria).

d Validation & Feedback Loop (Experimental Layer)

e Top-ranked molecules synthesized and validated in Nigerian laboratories.
¢ Biological assays performed for antimalarial, anti-sickle cell, and antimicrobial activities.

e Experimental results fed back into the Al pipeline to improve model performance.
e Applications & Impact (Output Layer)

e Discovery of novel, locally relevant drugs.
e Strengthening of Nigeria’s pharmaceutical independence.

e Empowerment of indigenous knowledge through Al validation.
f Challenges

e Data Scarcity — Limited digitization of Nigerian phytochemical and ethnobotanical datasets.

e Computational Resources — Training large generative models requires GPUs/TPUs not widely
accessible in Nigeria.

e Validation Gap — Al-predicted molecules require costly wet-lab validation.

e Ethical and Legal Issues — Concerns about intellectual property and benefit-sharing of indigenous
knowledge.

6. Conclusion and Future Work

Generative Al holds immense potential to revolutionize drug discovery by accelerating molecular de-
sign and optimizing drug candidates. By integrating Nigerian local content—including medicinal plants
and ethnopharmacological heritage—into generative deep learning frameworks, this approach not only fos-
ters innovation in drug discovery but also contributes to healthcare sustainability in Nigeria. The synergy
between Al-driven molecular design and indigenous resources represents a transformative pathway for ad-
dressing pressing healthcare challenges such as malaria, sickle cell anemia, and antimicrobial resistance.

Future studies should focus on:

1. Data Expansion and Curation — Building comprehensive Nigerian phytochemical and bioactivity
databases with standardized formats for Al training.

2. Integration of Multi-Omics Data — Incorporating genomics, proteomics, and metabolomics datasets to
enhance drug-target interaction predictions.

3. Advanced Generative Models — Exploring diffusion models and large molecular language models to
improve novelty and diversity in molecular generation.

4. High-Throughput Validation — Establishing Nigerian-based laboratories with robotics and automated
screening systems to scale up biological assays.
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5. Policy and Ethical Considerations — Creating frameworks for data sovereignty, intellectual property
rights, and fair benefit-sharing with local communities that contribute indigenous knowledge.

6. Global Collaborations — Partnering with international pharmaceutical research institutions while en-
suring local ownership of discoveries.

By advancing these directions, Nigeria can position itself as a continental leader in Al-driven drug discov-
ery, ensuring that future medicines are not only innovative but also culturally and contextually relevant.
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