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ABSTRACT

Seasonal rainfall forecasting is crucial for agricultural planning
and water resource management in Delta State, Nigeria, as the re-
gion’s economy is highly dependent on climate. This study investi-
gates the trend and appropriate models for forecasting seasonal rain-
fall patterns in the region. We employed a range of methods, in-
cluding traditional time series techniques like Holt’s Winter expo-
nential smoothing and the Seasonal Autoregressive Integrated Mov-
ing Average (SARIMA), alongside more advanced machine learning
and deep learning models. Critical data properties such as station-
arity and normality of error terms were first assessed. Model per-
formance was then evaluated using standard metrics, including root
mean square error, mean absolute error, mean absolute percentage er-
ror, and mean square error. The data was found to have a stationary
pattern, and among the models explored, the Holt’s Winter exponen-
tial smoothing model was identified as the best performing.
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1. Introduction

Accurate seasonal rainfall prediction is highly crucial for planning agriculture, flood control, and water
resources management, especially in regions like Delta State, Nigeria, where the economy is heavily reliant
on rain-fed agriculture and vulnerable to climatic fluctuations [3]. Rainfall variability is a major constraint
on socio-economic development. Repeated seasonal floods ravage agriculture, damage infrastructure, and
displace communities, while droughts cause crop failure and water scarcity. Therefore, enhanced pre-
dictability of localized rainfall is essential for agricultural planning, water resources management, and
resilience policy-making. Powerful predictive models are necessary to capture complex, non-linear dynam-
ics of atmospheric processes controlling rainfall patterns [6]. Traditional climate models have low skill in
predicting rainfall due to uncertainties in physical parameterizations [25]. On the other hand, cutting-edge
computational techniques are particularly adept at identifying weak patterns and connections that might
not be detected by conventional statistical methodologies, and hence are particularly well-suited to rainfall
prediction [7].

Effective rainfall prediction in Delta State involves enabling agriculture through the timing of planting
and harvest, disaster preparedness by way of early warning systems, and urban flood and water resource
planning. Time series modeling has been extensively used in economic and weather forecasting [37]. As
rainfall in the tropics is extremely seasonal, models that model periodicity directly are of special interest
[30]. Classical approaches such as the Autoregressive Integrated Moving Average (ARIMA) and its sea-
sonal variant (SARIMA) remain extensively used due to their ability to model autoregressive relationships,
moving averages, and seasonality [31]. Seasonal ARIMA models improve forecasting precision through
directly modeling repetitive seasonal components in rainfall data (Faulina, 2019). These methods are es-
pecially helpful in agriculturally dependent regions, wherein accurate forecasts are critical for scheduling
planting calendars, controlling irrigation, and mitigating the effects of droughts and floods [8]; [26]. Besides
ARIMA, several time series extensions have been utilized for rainfall forecasting. For instance, SARFIMA
models handle seasonality and long-memory, with a tendency to outperform SARIMA in Nigerian con-
ditions. Facebook Prophet is an effective West African rainfall prediction model, considering that it is
insensitive to outliers and missing data. Fuzzy Time Series (FTS) models are effectively suited for non-
linear and uncertain behavior of rainfall, and have a tendency to perform better than ARIMA in Nigerian
conditions. A variation, SARIMAX, incorporates exogenous variables such as temperature, humidity, and
ENSO indices for improved multi-variable forecasts.

Rainfall forecasting has witnessed increased usage of machine learning and soft computing method-
ologies to model complex temporal dependencies [33]. Artificial Neural Networks (ANNs) have been
extremely effective at replicating nonlinear hydrological processes [22]; [39]. More recent approaches, in-
cluding Random Forests, Extreme Gradient Boosting (XGBoost), and Recurrent Neural Networks (RNNs),
demonstrate strong predictive power by successfully modeling the nonlinear dependencies inherent in rain-
fall processes [4]. Long Short-Term Memory (LSTM) networks, in particular, have shown remarkable
ability to capture long-term dependencies in sequential meteorological data, resulting in improved accuracy
over conventional models [17]. The integration of these models with large-scale climatic data, like CMIP6
projections, is a recent advance in hydrological prediction [5].

Despite these advances, several challenges to rainfall prediction still exist. These include data quality
issues, like incompleteness or inconsistency of Nigerian meteorological station records. There is also a
problem of data scarcity, as deep learning models require large, high-quality datasets that are typically in
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short supply in the area ([11]). Interpretability of machine learning and deep learning models is typically
hindered by their status as ”black boxes,” which impedes understanding [10]. Additionally, complex models
are computationally expensive, making their real-time deployment difficult [38]. Rainfall is also regulated
by global teleconnections such as El Nifio, the Indian Ocean Dipole (I0D), and the Atlantic Nifio. Finally,
infrastructural limitations, including limited availability of high-resolution sensors and processing capacity,
are also part of the difficulty.

This study has several different objectives. It aims to acquire, clean, and pre-process historical rainfall
data for Delta State, specifically the city of Warri. It will then implement and compare statistical, machine
learning, and deep learning models. The performance of the models will be verified using RMSE, MAE,
R? and MAPE measures. The final product will be actionable information with usability in agriculture,
flood control, and climate resilience policy. The research aims to close the gap in localized rainfall predic-
tion studies for the Niger Delta [3]. Accurate forecasts will enable farmers to schedule crop calendars and
irrigation timing, and hence ensure food security [2]. Beyond agriculture, rainfall prediction assists with
water resource management, optimization of reservoir operations, and disaster preparedness [1]. By bench-
marking conventional time series against state-of-the-art machine learning techniques, this study seeks to
identify robust forecasting strategies for Delta State that balance accuracy, computational feasibility, and
ease of use under data-poor environments [13]; [27]; [23]. This study will examine a data set of monthly
rainfall from 1989 to 2015 obtained from the Statistical Bulletin: CBN 2015, and analyze it using Python
software. The study improves the reliability and accuracy of seasonal rainfall forecasting and thereby helps
achieve sustainable agriculture and food security, improved climate risk reduction and disaster resilience,
and evidence-based policy-making for urban and environmental planning in Delta State.

2. Methodology

This section delineates the methodology employed in developing and evaluating models for forecasting
seasonal rainfall in Delta State, Nigeria. The study integrates established time series analysis techniques
with advanced machine learning algorithms to capture the unique spatio-temporal dynamics of rainfall
patterns in the region. The framework encompasses data collection, preprocessing, feature engineering,
model selection, training, and validation, ensuring robust and reliable forecasts.

2.1. Data Collection and Sources

Rainfall and related climatic data covering the period 1989-2024 will be utilized. The monthly rainfall
dataset is obtained from the 2015 Statistical Bulletin of the National Bureau of Statistics (NBS), supple-
mented with updates from the Nigerian Meteorological Agency (NiMet). These records provide long-term
monthly rainfall observations for Delta State, forming the foundation of the forecasting models.

2.2. Data Preprocessing and Feature Engineering

Collected datasets will undergo preprocessing to ensure quality and consistency:

1 Data cleaning and gap filling: Missing values and outliers will be corrected using interpolation and
imputation techniques.

ii Lag features: Lagged rainfall (1-12 months), rolling means, and lagged climate indices will be gener-
ated to capture autocorrelation and teleconnection effects.
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iii Normalization/standardization: Applied where required for machine learning and deep learning mod-
els.

iv Feature selection: Optimization techniques such as SHAP values and recursive feature elimination
will identify the most salient predictors, enhancing parsimony and interpretability.

2.3. Modeling Approaches
2.4. Statistical Model: SARIMA

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model serves as a classical bench-
mark, designed to handle both seasonality and autocorrelation in rainfall data. The general SARIMA for-
mulation is:

SARIMA(p,d, q)(P,D, Q)

where p,d, q are the non-seasonal orders, P, D, Q are the seasonal orders, and s is the seasonal period
(e.g., s = 12 for monthly data). Optimal parameters will be selected using information criteria such as AIC
and BIC.

2.5. Machine Learning Models: Extreme Gradient Boosting (XGBoost)

Efficient in handling nonlinear relationships and complex feature interactions. Hyperparameters such as
maximum depth, learning rate, and subsampling ratio will be tuned using grid and randomized search.

2.6. Deep Learning Models

1. Long Short-Term Memory (LSTM): A recurrent neural network architecture well-suited for sequential
data. Input sequences will range from 12-24 months, with dropout and early stopping applied to
prevent overfitting.

2. Recurrent Neural Network (RNN) Variants
e Stacked LSTM (Unscaled & Scaled): Designed to capture long-term temporal dependencies in

sequential rainfall data.

e Scaled Stacked GRU: A simplified and computationally efficient alternative to LSTM with com-
petitive performance.

e Refined Scaled Stacked GRU: An optimized version of GRU that delivered the best performance
across all evaluation metrics.

2.7. Model Training Protocols

(a) Train/Validation/Test Split: The dataset will be divided into training (1989-2014), validation (2015—
2019), and testing (2020-2024) sets to preserve temporal ordering.

(b) Cross-Validation: Walk-forward (rolling origin) validation will assess robustness across multiple fore-
casting horizons.
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(c) Hyperparameter Tuning: Grid search, random search, and Bayesian optimization will be applied de-
pending on model complexity.

(d) Regularization: Dropout, weight decay, and early stopping will be applied to prevent overfitting in
deep learning models.

2.8. Model Evaluation

Performance will be assessed using the metrics of: Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and Coeflicient of Determination (R?).

To ensure the robustness of the SARIMA model, its performance will be rigorously evaluated using
several standard metrics:

(i) Mean Absolute Error (MAE): Measures the average magnitude of the errors without considering their
direction.

1 ¢ .
MAE =~} Iy~ 3. 2.1)
=1

(i1) Root Mean Square Error (RMSE): Provides a higher weight to larger errors, making it sensitive to

outliers.
1 < .
RMSE = 4/~ > o= (2.2)
=1

(iii)) Mean Absolute Percentage Error (MAPE): Expresses accuracy as a percentage, which facilitates com-
parison across different datasets.
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(iv) Mean Squared Error (MSE): Measures the average of the squared differences between predicted and
actual values.

1 n
MSE =~ > (i = §1)" (2.4)
=1

(v) Akaike Information Criterion (AIC): A metric used for model selection, penalizing complexity to find
the best-fitting model with the fewest parameters. A lower AIC value indicates a better model.

AIC =2k - 21In(L). (2.5)

(vi) Residual Analysis: A critical step to check for remaining patterns in the model’s errors. This in-
cludes verifying that residuals are randomly distributed (white noise) and normally distributed, often
confirmed using a Ljung-Box test to check for autocorrelation.
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3. Results and Analysis

In this section, we present the findings derived from applying statistical, machine learning, and deep
learning models to historical rainfall data for Warri, Delta State. The models were evaluated using RMSE,
MSE, R?, and MAPE to assess their forecasting performance and their comparative results.

The descriptive analysis of the dataset used for this study is given in Table 1.

Table 1. Summary Statistics of Rainfall for Asaba and Warri

Statistic Asaba Rainfall (mm) Warri Rainfall (mm)
Count 210.00 394.00

Mean 160.53 237.34
Standard Deviation 137.30 189.55
Minimum 0.00 0.00

25th Percentile 23.48 70.43

50th Percentile (Median) 144.75 203.30

75th Percentile 254.68 362.83
Maximum 540.20 868.40

As shown in Figure 1, rainfall peaks consistently occur around June to August each year, with the highest
values in July. Rainfall is at its lowest in January and December (between 10 mm and 20 mm), confirming
a distinct dry and wet season annually. This repeating cycle indicates the presence of strong seasonality.

Warri Rainfall Over Time

800

Rainfall (mm)
IS

N
5
3

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016
Date

Figure 1. Warri Rainfall Pattern Over time

3.1. Evaluation of SARIMA Model and Parameters

The Augmented Dickey-Fuller (ADF) test conducted on Warri rainfall generated a statistic of ADF =
—7.132 with a corresponding p-value of p = 3.50 x 107'°. Since the p-value is much less than the 0.05
significance level, we reject the null hypothesis of a unit root, indicating that the Warri rainfall time series is
stationary. This conclusion is further supported by the ACF and PACF of the raw data, shown in Figure The
ACF exhibits a gradually diminishing, wave-like pattern with peaks at lags 12, 24, and 36, indicating
pronounced seasonality and some degree of non-stationarity. The PACF features a prominent spike at lag 1
(and a smaller one at lag 2) with a sharp cutoff, suggesting an AR(1) or AR(2) process, while a spike at lag
12 indicates a seasonal autoregressive component.
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Autocorrelation Function (ACF)

Partial Autocorrelation Function (PACF)

r[v Tt, ? 0
T S

Figure 2. ACF and PACF of Warri Rainfall pattern

Table 2. SARIMAX Model Results for Warri Rainfall

Component Order / Parameter Coefficient Std. Error 95% CI Lower 95% CI Upper
AR (non-seasonal) 1 0.9982 0.009 0.980 1.016
MA (non-seasonal) 1 -0.9919 0.032 -1.055 -0.928
AR (seasonal) 12 0.9860 0.008 0.971 1.001
MA (seasonal) 12 -0.7849 0.039 -0.861 -0.709
Variance (0?) - 15560 1000.536 13600 17500

Model Orders: SARIMAX(p,d,q)x(P,D,Q,s) = (1,0,1)x(1,0,1,12)
Log Likelihood: -2097.546

AIC: 4205.093

BIC: 4224.148

From Table 2, the SARIMA (1,0,1) (1,0,1,12) model was identified as the best fit for analyzing Warri
rainfall data. The non-seasonal AR(1) coefficient of 0.9982 and the MA(1) coeflicient of -0.9919 sug-
gest a strong short-term persistence and quick error correction within the series. Likewise, the seasonal
AR(12) coeflicient of 0.9860 and the MA(12) coefficient of -0.7849 highlight the significant impact of
yearly seasonal cycles on rainfall patterns, with previous disturbances playing a crucial role in shaping fu-
ture trends. The residual variance (o> = 15,560) underscores the natural variability in rainfall, while the
relatively low values of the information criteria (AIC = 4205.093, BIC = 4224.148) indicate that the model
achieved a good balance between accuracy and simplicity. In summary, these findings reveal that Warri’s
rainfall is characterized by both persistent short-term correlations and strong seasonal influences, making
the SARIMA model an effective tool for predicting rainfall in this area.
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3.1.1. Model Performance

Table 3. Comparison of Forecasting Models Performance Metrics

Model RMSE MSE R? MAPE
SARIMA 134.66 18133.80 0.15 0.85
XGBoost 163.38 18133.80 0.15 0.48
Stacked LSTM 143.89 20704.07 -0.16  0.75
Scaled Stacked LSTM 131.46 17282.44 0.03 0.50
Scaled Stacked GRU 129.49 16768.74 0.06  0.51
Refined Scaled Stacked GRU  121.87 14852.28 0.17  0.42
Unscaled Stacked LSTM 143.89 20704.07 -0.16  0.75

From Table 3, the SARIMA model had an RMSE of 134.66, MSE of 18133.80, R? of 0.15, and MAPE of
0.85. It was somewhat accurate but struggled with complex rainfall patterns. XGBoost had a higher RMSE
(163.38) than SARIMA but the same MSE (18133.80) and R? (0.15). Its lower MAPE (0.48) means it was
more accurate overall, despite larger errors. For deep learning models, the unscaled and scaled Stacked
LSTM had RMSE:s of 143.89 and 131.46. The scaled version was better, with fewer errors and a lower
MAPE (0.50), but its R* was still low (0.03). The Scaled Stacked GRU did better than the LSTM with
an RMSE of 129.49 and R? of 0.06, showing it could better handle rainfall data patterns. The best model
was the Refined Scaled Stacked GRU, with the lowest RMSE (121.87), lowest MSE (14852.28), highest R?
(0.17), and best MAPE (0.42), showing it was the most accurate. Overall, deep learning models, especially
the Refined Scaled Stacked GRU, were better than SARIMA and XGBoost at reducing errors and explaining
data. Scaling improved LSTM and GRU models. Although R? values were low, showing rainfall is complex,
GRU models were better at generalizing. Furthermore, these results indicate that while statistical models
provide a foundational understanding of the underlying trends, deep learning approaches particularly those
of capturing long-term dependencies, offer enhanced accuracy for rainfall forecasting ([18]) ([20]). The
analysis revealed distinct strengths and weaknesses across the various modeling approaches, highlighting
the efficacy of certain methods in capturing the complex temporal dependencies and seasonal patterns in-
herent in tropical rainfall data. Specifically, the superior performance of certain advanced machine learning
techniques over traditional statistical models underscored their capability to model non-linear relationships
and interactions within the dataset.

3.1.2. Model Comparison

The R? analysis shows clear differences in model performance as shown in Figure 3. SARIMA and XG-
Boost achieved moderate values of about 0.15, providing a baseline but failing to capture non-linear rainfall
dynamics. Stacked LSTM and Unscaled Stacked LSTM performed poorly with negative R?, indicating
weak representation of rainfall variability. In contrast, Scaled Stacked LSTM and Scaled Stacked GRU
produced small positive values, showing improvement over standard LSTMs. The Refined Scaled Stacked
GRU was the best performer, attaining the highest R*(~ 0.17) and demonstrating superior ability to explain
rainfall variations.
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R Comparison Across Models (Warri Rainfall}
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Figure 3. R-square Across Models

The RMSE results in Figure 4 give clear differences in predictive accuracy. XGBoost recorded the high-
est RMSE (= 163), making it the least accurate, while SARIMA performed moderately (= 134). Stacked
LSTM and Unscaled Stacked LSTM also showed high errors (over 140), reflecting their limitations. In con-
trast, Scaled Stacked LSTM (~ 131) and Scaled Stacked GRU (= 129) reduced errors, showing improved
performance. The Refined Scaled Stacked GRU achieved the lowest RMSE (= 122), confirming its superior
accuracy and reliability in rainfall forecasting.

RMSE Comparison Across Models (Warri Rainfall)
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Figure 4. RMSE Comparison Across Models

The results show that the Refined Scaled Stacked GRU consistently outperformed all other models across
both R? and RMSE metrics, as demonstrated in Figures 3, 4, 5 and 6, respectively, establishing it as the most
reliable framework for rainfall forecasting in Warri. Traditional models such as SARIMA and XGBoost
provided useful baselines but lacked robustness in managing rainfall variability. Deep learning approaches,
especially GRU-based architectures, exhibited superior ability to capture the temporal dependencies and
non-linear interactions of rainfall, making them valuable tools for accurate and localized rainfall prediction.
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MAPE Comparison Across Models (Warri Rainfall)

Figure 5. MAPE Across Models

3.2. Residual Analysis

The residual plot of the SARIMA model reveals that it performs well at capturing the time-dependent
and seasonal pattern of the data. As seen in Figure 6, in the ACF and PACF plots nearly all the spikes of
autocorrelation lie inside the confidence interval, implying that the errors are uncorrelated and behave like
white noise, a main indication that the model fits well. Inspection of the QQ plot and the histogram shows
that the errors are approximately centered at zero, but the errors are not normally distributed, especially
at the tails, implying heavier-than-normal extreme values. In general, the model performs well for point
forecasting because it models the autocorrelation and seasonality well; however, the partial non-normality
may influence the accuracy of prediction intervals and should be considered.

ACF of SARIMA Residuals oo PACF of SARIMA Residuals

5 B P EY o o =
QQ Plot of SARIMA Residuals Histogram of SARIMA Residuals

- = E oo %0
nnnnnnnnnn Quanties Residual Val

Figure 6. Residual Analysis of SARIMA

SARIMA model performs well for capturing seasonality in the rainfalls by having correct predicted highs
and lows that coincide with actual cycles, yet it has difficulty in capturing the magnitude of the rainfalls by
over- or underestimating. Performance decreases significantly from mid-2013 by virtue of peculiar weather
or data irregularities. It performs well for trend and seasonality but less accurately for actual forecasts as
seen in Figure 7.
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SARIMA Model Predictions vs Actual Rainfall
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Figure 7. Forecasts Vs Actual: SARIMA

3.3. Discussion

In this section, the results are critically analyzed, situating the performance of different models within
the broader context of the existing literature on rainfall prediction. The exceptional performance of ad-
vanced machine learning techniques, such as the Refined Scaled Stacked GRU, is consistent with recent
research that highlights their effectiveness in capturing complex, non-linear relationships in meteorological
data, surpassing traditional statistical methods ([15];[34]). Notably, models like Extreme Gradient Boost-
ing and other tree-based ensemble methods have demonstrated significant capabilities in managing large
and complex datasets, revealing intricate patterns that simpler models often overlook ([28]) ([19]). This
finding aligns with studies that emphasize the robustness of models like CatBoost and XGBoost in main-
taining consistently low prediction errors across various datasets ([15]). Similarly, research assessing the
performance of machine learning models for hydrological variables has shown that models such as XG-
Boost consistently outperform traditional statistical approaches like LSTM, especially when dealing with
sparse datasets ([35]). The use of deep learning models, including Convolutional Neural Networks and
Gated Recurrent Units, has further advanced the state-of-the-art in rainfall-runoff predictions, particularly
for extreme events, by capturing intricate temporal dependencies and nonlinear relationships ([10]) ([4]).
The findings of this study support the growing body of literature advocating for the use of deep learning
and ensemble learning methods in hydrological forecasting due to their advanced capabilities in processing
high-resolution spatio-temporal data and addressing data scarcity issues, thereby providing a more nuanced
understanding of rainfall dynamics ([18]) ([12]) ([38]). This is in line with the idea that data-driven mod-
els, particularly deep learning architectures, can learn complex parameterizations directly from data, often
reducing model bias and outperforming traditional physics-based models ([9]). The integration of multi-
model ensembles and reservoir computing further enhances predictive accuracy, especially in ungauged
basins, by leveraging the strengths of diverse hydrological models ([11]).

4. Conclusion

The superior performance of machine learning methods in hydrological forecasting, particularly in im-
proving the accuracy of individual models and handling complex data, underscores their transformative
potential in water resource management ([32]). Unlike conventional hydrological models, which often
require extensive calibration and struggle with non-stationary conditions, deep learning techniques such
as Long Short-Term Memory (LSTM) networks can autonomously learn complex watershed and climatic
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responses from data. This enables more robust and generalizable predictions, particularly in data-scarce
regions or during extreme events where traditional models frequently fall short ([16]; [24]; [14] ).

The analysis conducted in this study revealed distinct strengths and weaknesses across the various mod-
eling approaches applied to seasonal rainfall prediction in Delta State. While the SARIMA model provided
modest accuracy and served as a reliable statistical baseline, its limitations in capturing nonlinear rainfall
dynamics were evident. Machine learning methods such as XGBoost achieved improved relative predictive
accuracy, though at the cost of higher error magnitudes. Deep learning models, particularly recurrent neu-
ral network (RNN) variants, demonstrated superior performance, with Gated Recurrent Unit (GRU)-based
architectures outperforming LSTM models. Notably, the Refined Scaled Stacked GRU achieved the lowest
error values and the highest explanatory power, establishing itself as the most reliable model for rainfall
forecasting in Warri.

Beyond rainfall prediction, the integration of deep learning into operational hydrological frameworks
represents a major advancement in flood and streamflow forecasting. Sophisticated data-driven models
such as LSTMs and GRUs enhance computational efficiency and predictive accuracy for hydrological ex-
tremes, including floods ([23];[40]). Furthermore, the use of machine learning for post-processing ensemble
forecasts enhances the reliability of medium-range predictions ([29]). The ability of these models to cap-
ture intricate temporal dependencies and nonlinear relationships within hydrological time series contributes
significantly to improved flood risk assessment and the development of early warning systems ([15];[36] ).

Taken together, these findings highlight the critical role that machine learning and deep learning play
in modern hydrological forecasting. By transitioning from traditional physically-based approaches to Al-
driven models, predictive frameworks can simultaneously reduce computational costs and enhance accu-
racy. This establishes deep learning, particularly GRU-based architectures, as valuable tools for advancing
rainfall and flood prediction in Delta State and beyond. Ultimately, these models offer robust solutions to
complex environmental challenges, strengthen disaster preparedness, and support climate resilience strate-
gies in rainfall-dependent sectors ([21]).
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